investigated the reactivity of ozone6 (O3) with oxazolidinone-
functionalized enecarbamates. The selectivity during pho-
tooxidation by O2 was shown to depend on the alkene
b
Table 1. Oxidation of the (E)- and (Z)-Enecarbamatesa by O3
sub- % ee % con-
stratea solvent (°C) MDBc versiond se ∆∆H‡ f ∆∆S‡ f
1
T
geometry;3,4 the (E)-isomer gives higher selectivity than the
corresponding (Z)-isomer in isotropic media.3 By investigat-
ing the reactivity of O3 with oxazolidinone-derived enecar-
bamates, we expected to gain insight into the high stereo-
E1
CD2Cl2
20 22 (S)
-15 24 (S)
-45 16 (S)
-70 18 (S)
20 18 (S)
6
15
18
27
12
17
25
4
1.6
1.7
1.4
1.5
0.16
1.49
1
selectivity observed with O2, in view of the facts that (i)
O3 and 1O2 are electrophilically similar in nature,5-7 (ii) the
E1
E1
CDCl3
1.5 -0.48 -0.97
1
products upon oxidation with O2 and O3 are the same
-15 20 (S)
-70 29 (S)
1.6
2.0
1.1
1.1
1.0
1.1
(Scheme 1), and (iii) the importance of radiationless
deactiVation (physical quenching) may be assessed during
the oxidation process because O3 is a reactive ground-state
CD3OD
20
-15
-45
-70
4 (S)
2 (S)
0
0.12
0.16
6
4
1
species compared to O2, an excited-state molecule.
4 (S)
5
Z1
Z2
CD2Cl2
CD2Cl2
20 31 (R)
-15 30 (R)
-78 36 (R)
20 33 (S)
20 27 (S)
-15 38 (S)
-15 12 (S)
10
12
9
6
9
2.0 -0.14
1.9
2.2
0.79
2.98
ln(kR/kS) ) ln[(100 + % ee)/(100 - % ee)]
ln(kR/kS) ) ∆∆S‡R-S/R - ∆∆H‡R-S/RT
(1)
(2)
2.0
1.8
2.3
1.3
1.2
2.2
1.1
1.6
1.4
1.5
0.6
kR ln[1 - C(1 + eeMDB)]
7
s )
)
(3)
20
27
9
36
16
17
14
3
kS
ln[1 - C(1 - eeMDB)]
-45
-70 36 (S)
-70 4 (S)
6 (S)
where C in eq 3 is the conversion and eeMDB is the ee value
of the MDB product.
Z2
Z2
CDCl3
20 20 (S)
-15 16 (S)
-70 18 (S)
20 20 (S)
-15 21 (S)
-45 22 (S)
-70 22 (S)
0.08
1.03
0.62
The epimeric pairs of oxazolidinone-derived (E)- and (Z)-
enecarbamates were oxidized with O3 in three different
solvents (CD2Cl2, CDCl3, and CD3OD) at various temper-
atures (Table 1). The conversion was kept low to avoid side
reactions,6 and the enantiomeric excess (ee) was obtained
by GC analysis of the methyldesoxybenzoin (MDB) product
on a chiral stationary phase (Scheme 1). Inspection of Table
1 reveals the following features: (i) The same enantiomer
of the MDB is enhanced upon varying the solvent, but a
noticeable change in the ee values is observed at the same
temperature for both (E)- and (Z)-enecarbamates; for ex-
ample, at -70 °C, the ee values for O3 oxidation of E1 in
CD3OD is 4%; in CD2Cl2, 18%; and in CDCl3, 29%. (ii)
The sense of the enhanced MDB enantiomer depends on the
configuration at the C-4 position of the oxazolidinone ring
as well as the alkene geometry; for example, E1 gave the
(S)-MDB in excess, whereas the corresponding (Z)-isomer
CD3OD
1.5 -0.05
4
16
7
1.5
1.6
1.6
a A ca. 50/50 mixture of diastereomers (total concentration of 2.3 ×
10-3 M) was used. b Procedure given in Supporting Information. c Average
of three runs; error (6%. d Conversion monitored by 1H NMR spectroscopy
(see Supporting Information); the conversion was kept low to prevent side
reactions (ref 6). e From eq 3. f From eqs 1 and 2. ∆∆Hq given in (kcal
mol-1); ∆∆Sq given in (cal mol-1 K-1).
(Z1) gave (R)-MDB in excess. (iii) The observed ee value
depends on the extent of conversion, i.e., ee values were
moderate at low conversions and small at high conversions.
(iv) The same MDB enantiomer is enhanced upon varying
the temperature. (v) The change of the configuration at the
C-4 position of the oxazolidinone reverses the sense of the
MDB enantiomer to the same extent (Figure 1).
(2) (a) Inoue, Y.; Ramamurthy, V. Chiral Photochemistry; Marcel
Dekker: New York, 2004. (b) Lewis, T. J.; Randall, L. H.; Rettig, S. J.;
Scheffer, J. R.; Trotter, J.; Wu, C.-H. J. Am. Chem. Soc. 1996, 118, 6167.
(c) Leibovitch, M.; Olovsson, G.; Sundarababu, G.; Ramamurthy, V.;
Scheffer, J. R.; Trotter, J. J. Am. Chem. Soc. 1996, 118, 1219. (d) Chong,
K. C. W.; Sivaguru, J.; Shichi, T.; Yoshimi, Y.; Ramamurthy, V.; Scheffer,
J. R. J. Am. Chem. Soc. 2002, 124, 2858-2859.
(3) Poon, T.; Sivaguru, J.; Franz, R.; Jockusch, S.; Martinez, C.;
Washington, I.; Adam, W.; Inoue, Y.; Turro, N. J. J. Am. Chem. Soc. 2004,
126, 10498-10499.
(4) Sivaguru, J.; Poon, T.; Franz, R.; Jockusch, S.; Adam, W.; Turro, N.
J. J. Am. Chem. Soc. 2004, 126, 10816-10817.
(5) (a) Wasserman, H. H.; Murray, R. W., Eds.; Singlet Oxygen;
Academic: New York; 1979. (b) Frimer, A. A., Ed. Singlet Oxygen; CRC:
Boca Raton; 1985; Vols. 1-4. (c) Gollnick, K.; Kuhn, H. J. Singlet Oxygen;
Wasserman, H. H.; Murray, R. W.; Eds.; Academic: New York, 1979. (d)
Foote, C. S. Acc. Chem. Res. 1968, 1, 104. (e) Gollnik, K. AdV. Chem.
1968, 77, 78.
(6) Bailey, P. S. Ozonation in Organic Chemistry; New York, 1978; Vols.
1 and 2.
(7) (a) Wadt, W. R.; Goddard, W. A., III. J. Am. Chem. Soc. 1975, 97,
3004-3021. (b) Goddard, W. A., III; Dunning, T. J., Jr.; Hunt, W. J.; Hay,
P. J. Acc. Chem. Res. 1973, 6, 368-376.
Figure 1. GC traces of product MDB. Opposite senses of ee were
observed in the ozonolysis of Z1 (B) and Z2 (A) due to the opposite
configuration at the C-4 position of the oxazolidinone.
2090
Org. Lett., Vol. 7, No. 11, 2005