J. S. Yadav et al. / Tetrahedron Letters 47 (2006) 3773–3776
3775
8. (a) Just, G.; O’Connor, B. Tetrahedron Lett. 1988, 29,
753–756; (b) Liu, S. Y.; Huang, D. F.; Huang, H. H.;
Huang, L. Chin. Chem. Lett. 2000, 11, 957–960; (c) Cossy,
J.; Pradaux, F.; BouzBouz, S. Org. Lett. 2001, 3, 2233–
2235; (d) Kiyotsuka, Y.; Igarashi, J.; Kobayashi, Y.
Tetrahedron Lett. 2002, 43, 2725–2729; (e) Marshall, J. A.;
Bourbeau, M. P. Org. Lett. 2003, 5, 3197–3199; (f)
Ramachandran, P. V.; Liu, H. P.; Reddy, M. V. R.;
Brown, H. C. Org. Lett. 2003, 5, 3755–3757.
9. Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64,
23–27.
Chemoselective esterification of diol 12a with acryloyl
chloride and DIPEA in CH2Cl2 at 0 °C gave an ester
alcohol, which was subjected to ring-closing metathe-
sis20 (RCM) with Grubbs’ 1st generation catalyst (0.1
equiv) in the presence of Ti(O-i-Pr)4 (0.3 equiv) in reflux-
ing CH2Cl2 for 12 h to afford lactone 20 in 92% yield.
Cleavage of the 1,2-O-isopropylidene group of 20 by
heating at 50 °C in 30% aq AcOH afforded the lactol
21. Iodomethylenation of lactol 21 gave the Z-isomer
of 2 as the major product (Z:E = 3:1; Scheme 2).
10. Still, W. C.; McDonald, J. H., III. Tetrahedron Lett. 1980,
21, 1031–1034.
11. Wittig, G.; Lohmann, L. Justus Liebigs Ann. Chem. 1942,
550, 260–262.
12. (a) Seyferth, D.; Heeren, J. K.; Singh, G.; Grim, S. O.;
Hughes, W. B. J. Organomet. Chem. 1966, 5, 267–274; (b)
Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173–
2174.
In conclusion, we have disclosed the synthesis of the key
intermediate 2 in the formal synthesis of fostriecin using
a carbohydrate-based approach, which would be of
great use for the synthesis of various fostriecin
congeners.
13. (a) Schmidt, O. T. Methods Carbhydr. Chem. 1965, 2, 320–
324; (b) Wolfrom, M. L.; Hanessian, S. J. Org. Chem.
1962, 27, 1800–1804.
Acknowledgement
I.P. thanks CSIR, New Delhi, for the research
fellowship.
O
OH
O
d, e
O
b, c
a
8
3
O
O
O
O
HO
(Diacetone
glucose)
BnO
References and notes
1. (a) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J.
Antibiot. 1983, 36, 1595–1600; (b) Stampwala, S. S.;
Bunge, R. H.; Hurley, T. R.; Willmer, N. E.; Brankiewicz,
A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C.
J. Antibiot. 1983, 36, 1601–1605; (c) Hohanson, G. C.;
French, J. C. J. Org. Chem. 1985, 50, 462–466.
2. (a) Jackson, R. C.; Fry, D. W.; Boritzki, T. J.; Roberts, B.
J.; Hook, K. E.; Leopold, W. R. Adv. Enzyme Reg. 1985,
23, 193–215; (b) de Jong, R. S.; de Vries, E. G. E.; Mulder,
N. H. Anti-Cancer Drugs 1997, 8, 413–418.
3. (a) Lewy, D. S.; Gauss, C. M.; Soenen, D. R.; Boger, D. L.
Curr. Med. Chem. 2002, 9, 2005–2032; (b) de Jong, R. S.;
Mulder, N. H.; Uges, D. R. A.; Sleijfer, D. T.; Hoppener,
F. J. P.; Groen, H. J. M.; Willemse, P. H. B.; van der
Graaf, W. T. A.; de Vries, E. G. E. Br. J. Cancer 1999, 79,
882–887.
4. Boger, D. L.; Hikota, M.; Lewis, B. M. J. Org. Chem.
1997, 62, 1748–1753.
5. Boger, D. L.; Ichikawa, S.; Zhong, W. J. Am. Chem. Soc.
2001, 123, 4161–4167.
6. Buck, S. B.; Hardouim, C.; Ichikawa, S.; Soenen, D. R.;
Gauss, C. M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.;
Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2003,
125, 15694–15695.
Reagents and conditions: (a) Ref. 12b; (b) PCC, NaOAc,
CH2Cl2, rt, 12 h, 89%; (c) Pd/C, H2, rt, 12 h, 98%; (d)
MsCl, Et3N, DMAP (cat), CH2Cl2, 0 °C–rt, 3 h, then
DBU, rt, 12 h, 94%; (e) Raney-Ni, H2, n-hexane, 98%.
14. Flechtner, T. W. Carbohydr. Res. 1979, 77, 262–266.
25
15. (a) Spectral data of compound 5: mp = 78–80 °C ½aꢁD
ꢀ28.4 (c 1.1, CHCl3). 1H NMR (400 MHz, CDCl3): d 5.73
(d, J = 3.8 Hz, 1H), 4.70–4.65 (m, 1H), 4.42–4.32 (m, 1H),
4.11–4.05 (m, 1H), 4.00 (td, J = 7.7, 1.5 Hz, 1H), 3.60 (dd,
J = 8.5, 7.0 Hz, 1H), 2.24–2.09 (m, 1H), 1.82 (dd, J = 14.0,
3.8 Hz, 1H), 1.55 (s, 3H), 1.42 (s, 3H), 1.35 (s, 3H), 1.30 (s,
3H). 13C NMR (75 MHz, CDCl3): d 112.6, 109.8, 106.3,
81.3, 80.3, 77.5, 65.9, 33.4, 27.2, 26.6, 26.1, 25.2. Mass
(ESI-MS) m/z: 267 (M+Na)+. HRMS calcd for
C12H20O5Na: 267.1203 (M+Na)+. Found: 267.1208; (b)
25
Spectral data of compound 8: ½aꢁD +5.8 (c 3.2, CHCl3). 1H
NMR (300 MHz, CDCl3): d 5.82 (d, J = 4.5 Hz, 1H),
4.67–4.64 (m, 1H), 4.31 (dd, J = 9.8, 1.5 Hz, 1H), 2.69 (d,
J = 14.3 Hz, 1H), 2.32 (s, 3H), 2.11–2.02 (m, 1H), 1.37 (s,
3H), 1.25 (s, 3H). 13C NMR (75 MHz, CDCl3): d 208.8,
111.6, 106.5, 84.4, 79.5, 33.4, 26.5, 25.6, 25.3. Mass (ESI-
MS) m/z: 209 (M+Na)+. HRMS calcd for C9H14O4Na:
209.0734 (M+Na)+. Found: 209.0738.
7. (a) Chavez, D. E.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2001, 40, 3667–3670; (b) Reddy, Y. K.; Falck, J. R. Org.
Lett. 2002, 4, 969–971; (c) Miyashita, K.; Ikejiri, M.;
Kawasaki, H.; Maemura, S.; Imanishi, T. Chem. Commun.
2002, 742–743; (d) Miyashita, K.; Ikejiri, M.; Kawasaki,
H.; Maemura, S.; Imanishi, T. J. Am. Chem. Soc. 2003,
125, 8238–8243; (e) Wang, Y. G.; Kobayashi, Y. Org.
Lett. 2002, 4, 4615–4618; (f) Esumi, T.; Okamoto, N.;
Hatakeyama, S. Chem. Commun. 2002, 3042–3043; (g)
Fujii, K.; Maki, K.; Kanai, M.; Shibasaki, M. Org. Lett.
2003, 5, 733–736; (h) Trost, B. M.; Frederiksen, M. U.;
Papillon, J. P. N.; Harrington, P. E.; Shin, S.; Shireman,
B. T. J. Am. Chem. Soc. 2005, 127, 3666–3667; (i) Fujii,
K.; Maki, K.; Kanai, M.; Shibasaki, M.; Motoki, R.;
Kobayashi, T.; Tamura, S. J. Am. Chem. Soc. 2005, 127,
17111–17117.
16. (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980,
102, 5974–5976; (b) Martin, V. S.; Woodward, S. S.;
Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B.
J. Am. Chem. Soc. 1981, 103, 6237–6240; (c) Gao, Y.;
Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–
5780.
17. Yadav, J. S.; Deshpande, P. K.; Sharma, G. V. M.
Tetrahedron 1990, 46, 7033–7046.
25
18. (a) Spectral data of compound 9a: ½aꢁD ꢀ28.5 (c 3.5,
CHCl3). 1H NMR (300 MHz, CDCl3): d 5.93–5.78 (m,
1H), 5.71 (d, J = 4.5 Hz, 1H), 5.29 (dd, J = 17.3, 1.5 Hz,
1H), 5.18 (dd, J = 10.5, 1.5 Hz, 1H), 4.77–4.71 (m, 1H),
4.15 (s, 2H), 4.07 (dd, J = 8.3, 7.5 Hz, 1H), 4.04–4.01 (m,
2H), 2.92 (br s, OH), 2.22 (dt, J = 13.5, 7.5 Hz 1H), 2.09
(ddd, J = 13.5, 11.3, 3.7 Hz, 1H), 1.56 (s, 3H), 1.40 (s, 3H),