948
X. Zhang et al.: Mechanism of the Methyl Radical Loss
7. Thurman, E.M., Ferrer, I., Pozo, O.J., Sancho, J.V., Hernandez, F.: The
even-electron rule in electrospray mass spectra of pesticides. Rapid
Commun. Mass Spectrom. 21, 3855–3868 (2007)
8. Williams, J.P., Nibbering, N.M.M., Green, B.N., Patel, V.J., Scrivens,
J.H.: Collision-induced fragmentation pathways including odd-electron
ion formation from desorption electrospray ionization generated
protonated and deprotonated drugs derived from tandem accurate mass
spectrometry. J. Mass Spectrom. 41, 1277–1286 (2006)
19. Butler, M., Mañez, P.A., Cabrera, G.M.: An experimental and
computational study on the dissociation behavior of hydroxypyridine
N-oxides in atmospheric pressure ionization mass spectrometry. J. Mass
Spectrom. 45, 536–544 (2010)
20. Vessecchi, R., Emery, F.S., Galembeck, S.E., Lopes, N.P.: Fragmenta-
tion studies and electrospray ionization mass spectrometry of lapachol:
Protonated, deprotonated and cationized species. Rapid Commun. Mass
Spectrom. 24, 2101–2108 (2010)
9. Levsen, K., Schiebel, H.-M., Terlouw, J.K., Jobst, K.J., Elend, M.,
Preiβ, A., Thiele, H., Ingendoh, A.: Even-electron ions: A systematic
study of the neutral species lost in the dissociation of quasimolecular
ions. J. Mass Spectrom. 42, 1024–1044 (2007)
10. Vessecchi, R., Carollo, C.A., Lopes, J.N.C., Crotti, A.E.M., Lopes,
N.P., Galembeck, S.E.: Gas-phase dissociation of 1,4-naphthoquinone
derivative anions by electrospray ionization tandem mass spectrometry.
J. Mass Spectrom. 44, 1224–1233 (2009)
11. Cai, Y., Mo, Z., Rannulu, N.S., Guan, B., Kannupal, S., Gibb, B.C., Cole,
R.B.: Characterization of an exception to the ‘even-electron rule’ upon low-
energy collision induced decomposition in negative ion electrospray
tandem mass spectrometry. J. Mass Spectrom. 45, 235–240 (2010)
12. Bajpai, L., Varshney, M., Seubert, C.N., Stevens, S.M., Johnson, J.V.,
Yost, R.A., Dennis, D.M.: Mass spectral fragmentation of the
intravenous anesthetic propofol and structurally related phenols. J.
Am. Soc. Mass Spectrom. 16, 814–824 (2005)
13. Chen, K., Rannulu, N.S., Cai, Y., Lane, P., Liebl, A.L., Rees, B.B.,
Corre, C., Challis, G.L., Cole, R.B.: Unusual odd-electron fragments
from even-electron protonated prodiginine precursors using positive-ion
electrospray tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 19,
1856–1866 (2008)
14. Xu, G., Huang, T., Zhang, J., Huang, J.K., Carlson, T., Miao, S.:
Investigation of collision-induced dissociations involving odd-electron
ion formation under positive electrospray ionization conditions using
accurate mass. Rapid Commun. Mass Spectrom. 24, 321–327 (2010)
15. Hu, N., Tu, Y.-P., Jiang, K., Pan, Y.: Intramolecular charge transfer in
the gas phase: Fragmentation of protonated sulfonamides in mass
spectrometry. J. Org. Chem. 75, 4244–4250 (2010)
16. Chai, Y., Sun, H., Pan, Y., Sun, C.: N-centered odd-electron ions formation
from collision-induced dissociation of electrospray ionization generated
even-electron ions: Single electron transfer via ion/neutral complex in the
fragmentation of protonated N,N′-dibenzylpiperazines and protonated N-
benzylpiperazines. J. Am. Soc. Mass Spectrom. 22, 1526–1533 (2011)
17. Hau, J., Stadler, R., Jenny, T.A., Fay, L.B.: Tandem mass spectrometric
accurate mass performance of time-of-flight and Fourier transform ion
cyclotron resonance mass spectrometry: A case study with pyridine
derivatives. Rapid Commun. Mass Spectrom. 15, 1840–1848 (2001)
18. Denekamp, C., Tenetov, E., Horev, Y.: Homolytic cleavages in
pyridinium ions, an excited state process. J. Am. Soc. Mass. Spectrom.
14, 790–801 (2003)
21. Cuyckens, F., Claeys, M.: Mass spectrometry in the structural analysis
of flavonoids. J. Mass Spectrom. 39, 1–15 (2004)
22. Cheng, C.-R., Yang, M., Wu, Z.-Y., Wang, Y., Zeng, F., Wu, W.-Y.,
Guan, S.-H., Guo, D.-A.: Fragmentation pathways of oxygenated
tetracyclic triterpenoids and their application in the qualitative analysis
of Ganoderma lucidum by multistage tandem mass spectrometry. Rapid
Commun. Mass Spectrom. 25, 1323–1335 (2011)
23. Zhao, Z., Moghadasian, M.H.: Chemistry, natural sources, dietary
intake, and pharmacokinetic properties of ferulic acid: A review. Food
Chem. 109, 691–702 (2008)
24. Itagaki, S., Kurokawa, T., Nakata, C., Saito, Y., Oikawa, S., Kobayashi,
M., Hirano, T., Iseki, K.: In vitro and in vivo antioxidant properties of
ferulic acid: a comparative study with other natural oxidation inhibitors.
Food Chem. 114, 466–471 (2009)
25. Barone, E., Calabrese, V., Mancuso, C.: Ferulic acid and its therapeutic
potential as a hormetin for age-related diseases. Biogerontology 10, 97–
108 (2009)
26. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,
Cheeseman, J.R., Zakrzewski, V.G., Montgomery Jr., J.A., Stratmann,
R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin,
K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M.,
Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S.,
Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K.,
Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B.,
Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A.,
Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith,
T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C.,
Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W.,
Andres, J.L., Gonzalez, C., Head-Gordon, M.E., Replogle, S., Pople,
J.A.: Gaussian 03. Gaussian Inc., Pittsburgh, PA (2003)
27. Tain, Z., Wang, X.-B., Wang, L.-S., Kass, S.R.: Are carboxyl groups
the most acidic sites in amino acids? Gas-phase Acidities, photoelectron
spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their
conjugate bases. J. Am. Chem. Soc. 131, 1174–1181 (2009)
28. Steill, J.D., Oomens, J.: Gas-phase deprotonation of p-hydroxybenzoic
acid investigated by IR spectroscopy: Solution-phase structure is
retained upon ESI. J. Am. Chem. Soc. 131, 13570–13571 (2009)
29. Nguyen, M.T., Creve, S., Ha, T.K.: On the formation of the
+
CH2CH2CH 0 NH2 distonic radical cation upon ionization of
cyclopropylamine and allylamine. Chem. Phys. Lett. 293, 90–96 (1998)