Organic Letters
Letter
Aldehydes by Combined Organocatalysis and Transition-Metal
Catalysis. Angew. Chem., Int. Ed. 2015, 54, 10193−10197.
(9) Liu, W.-B.; Okamoto, N.; Alexy, E. J.; Hong, A. Y.; Tran, K.;
Stoltz, B. M. Enantioselective γ-Alkylation of α,β-Unsaturated
Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric
Allylic Alkylation/Cope Rearrangement. J. Am. Chem. Soc. 2016, 138,
5234−5237.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
(10) Sarkar, R.; Mitra, S.; Mukherjee, S. Iridium-Catalyzed
Enantioselective Direct Vinylogous Allylic Alkylation of Coumarins.
Chem. Sci. 2018, 9, 5767−5772.
The authors declare no competing financial interest.
(11) Shi, C.-Y.; Xiao, J.-Z.; Yin, L. Iridium-Catalyzed Direct
Asymmetric Vinylogous Allylic Alkylation. Chem. Commun. 2018,
54, 11957−11960.
ACKNOWLEDGMENTS
■
(12) For selected examples of intermolecular [2 + 2]-photo-
This work is funded by the Science and Engineering Research
Board (SERB) [Grant No. EMR/2016/005045]. R.S. thanks
the Council of Scientific and Industrial Research (CSIR), New
Delhi, for a doctoral fellowship. We thank Mr. Rupak Saha
(Department of Inorganic and Physical Chemistry, IISc,
Bangalore) for his help with the X-ray structure analysis. Mr.
Aditya Chakrabarty (Department of Organic Chemistry, IISc,
Bangalore) is gratefully acknowledged for his help with the
synthesis of some of the starting materials.
̈
cycloaddition of 2-quinolone, see: (a) Troster, A.; Alonso, R.; Bauer,
A.; Bach, T. Enantioselective Intermolecular [2 + 2] Photo-
cycloaddition Reactions of 2(1H)-Quinolones Induced by Visible
Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808−7811. (b) Bach,
T.; Bergmann, H. Enantioselective Intermolecular [2 + 2]-Photo-
cycloaddition Reactions of Alkenes and a 2-Quinolone in Solution. J.
Am. Chem. Soc. 2000, 122, 11525−11526. For examples of
intramolecular [2 + 2]-photocycloaddition of 2-quinolone, see:
(c) Alonso, R.; Bach, T. A Chiral Thioxanthone as an Organocatalyst
for Enantioselective [2 + 2] Photocycloaddition Reactions Induced by
Visible Light. Angew. Chem., Int. Ed. 2014, 53, 4368−4371. (d) Bach,
T.; Bergmann, H.; Grosch, B.; Harms, K. Highly Enantioselective
Intra- and Intermolecular [2 + 2] Photocycloaddition Reactions of 2-
Quinolones Mediated by a Chiral Lactam Host: Host−Guest
Interactions, Product Configuration, and the Origin of the Stereo-
selectivity in Solution. J. Am. Chem. Soc. 2002, 124, 7982−7990.
(13) For a different approach to similar enantioselective [2 + 2]-
photocycloaddition of 2-quinolones, see: (a) Yagishita, F.; Takagishi,
N.; Ishikawa, H.; Kasashima, Y.; Mino, T.; Sakamoto, M.
Deracemization of Quinolonecarboxamides by Dynamic Crystalline
Salt Formation and Asymmetric Photoreaction by Using the Frozen
Chirality. Eur. J. Org. Chem. 2014, 6366−6370. (b) Yagishita, F.;
Mino, T.; Fujita, T.; Sakamoto, M. Two-Step Asymmetric Reaction
Using the Frozen Chirality Generated by Spontaneous Crystallization.
Org. Lett. 2012, 14, 2638−2641. (c) Yagishita, F.; Sakamoto, M.;
Mino, T.; Fujita, T. Asymmetric Intramolecular Cyclobutane
Formation Via Photochemical Reaction of N,N-Diallyl-2-Quinolone-
3-Carboxamide Using a Chiral Crystalline Environment. Org. Lett.
2011, 13, 6168−6171.
REFERENCES
■
(1) Takeuchi, R.; Kashio, M. Highly Selective Allylic Alkylation with
a Carbon Nucleophile at the More Substituted Allylic Terminus
Catalyzed by an Iridium Complex: An Efficient Method for
Constructing Quaternary Carbon Centers. Angew. Chem., Int. Ed.
Engl. 1997, 36, 263−265.
(2) Janssen, J. P.; Helmchen, G. First Enantioselective Alkylations of
Monosubstituted Allylic Acetates Catalyzed by Chiral Iridium
Complexes. Tetrahedron Lett. 1997, 38, 8025−8026.
(3) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You,
S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions.
Chem. Rev. 2019, 119, 1855. (b) Qu, J.; Helmchen, G. Applications of
Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in
Target-Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539−2555.
(c) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. Iridium-Catalyzed
Diastereo-, Enantio-, and Regioselective Allylic Alkylation with
Prochiral Enolates. ACS Catal. 2016, 6, 6207−6213. (d) Tosatti, P.;
Nelson, A.; Marsden, S. P. Recent Advances and Applications of
Iridium-Catalysed Asymmetric Allylic Substitution. Org. Biomol.
Chem. 2012, 10, 3147−3163. (e) Hartwig, J. F.; Stanley, L. M.
Mechanistically Driven Development of Iridium Catalysts for
Asymmetric Allylic Substitution. Acc. Chem. Res. 2010, 43, 1461−
1475. (f) Helmchen, G.; Dahnz, A.; Dubon, P.; Schelwies, M.;
Weihofen, R. Iridium-Catalysed Asymmetric Allylic Substitutions.
Chem. Commun. 2007, 675−691.
(4) Ohmura, T.; Hartwig, J. F. Regio- and Enantioselective Allylic
Amination of Achiral Allylic Esters Catalyzed by an Iridium−
Phosphoramidite Complex. J. Am. Chem. Soc. 2002, 124, 15164−
15165.
(5) Defieber, C.; Ariger, M.; Moriel, P.; Carreira, E. Iridium-
Catalyzed Synthesis of Primary Allylic Amines from Allylic Alcohols:
Sulfamic Acid as Ammonia Equivalent. Angew. Chem., Int. Ed. 2007,
46, 3139−3143.
(6) Liu, W.-B.; Zheng, C.; Zhuo, C.-X.; Dai, L.-X.; You, S.-L.
Iridium-Catalyzed Allylic Alkylation Reaction with N-Aryl Phosphor-
amidite Ligands: Scope and Mechanistic Studies. J. Am. Chem. Soc.
2012, 134, 4812−4821.
̈
(14) Troster, A.; Bauer, A.; Jandl, C.; Bach, T. Enantioselective
Visible Light-Mediated Formation of 3-Cyclopropylquinolones via
Triplet-Sensitized Deracemization. Angew. Chem., Int. Ed. 2019, 58,
3538−3541.
(15) (a) Hu, Z.; Banothu, J.; Beesu, M.; Gustafson, C. J.; Brush, M.
J. H.; Trautman, K. L.; Salyer, A. C. D.; Pathakumari, B.; David, S. A.
Identification of Human Toll-Like Receptor 2-Agonistic Activity in
Dihydropyridine−Quinolone Carboxamides. ACS Med. Chem. Lett.
2019, 10, 132−136. (b) Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak,
K.; Pathak, D.; Vaidya, A. Comprehensive Review on Current
Developments of Quinoline-Based Anticancer Agents. Arabian J.
V. P.; Jayshree, B. S.; Kar, S. S.; Anandam, A.; Thomas, S.; Jain, P.;
Rai, A.; Rao, C. M. Elucidation of Structure-Activity Relationship of 2-
Quinolone Derivatives and Exploration of their Antitumor Potential
through Bax-Induced Apoptotic Pathway. Chem. Biol. Drug Des. 2012,
80, 291−299.
(16) Kayal, S.; Mukherjee, S. Catalytic Enantioselective Vinylogous
Allylic Alkylation of Coumarins. Org. Lett. 2017, 19, 4944−4947.
(18) Teichert, J. F.; Feringa, B. L. Phosphoramidites: Privileged
Ligands in Asymmetric Catalysis. Angew. Chem., Int. Ed. 2010, 49,
2486−2528.
(19) To study the substrate scope, 3 mol % of [Ir(COD)Cl]2 was
used over 1.5 mol % as the former led to uniformly high yield and er.
(7) (a) Chen, M.; Hartwig, J. F. Iridium-Catalyzed Regio- and
Enantioselective Allylic Substitution of Silyl Dienolates Derived from
Dioxinones. Angew. Chem., Int. Ed. 2014, 53, 12172−12176. Also see:
(b) Chen, M.; Hartwig, J. F. Iridium-Catalyzed Regio- and
Enantioselective Allylic Substitution of Trisubstituted Allylic Electro-
philes. Angew. Chem., Int. Ed. 2016, 55, 11651−11655.
(8) Næsborg, L.; Halskov, K. S.; Tur, F.; Mønsted, S. M. N.;
Jørgensen, K. A. Asymmetric γ-Allylation of α,β-Unsaturated
E
Org. Lett. XXXX, XXX, XXX−XXX