J. Zinczuk et al. / Journal of Molecular Structure 994 (2011) 302–305
305
Table 4
– All the characteristic
m
(CC) stretching modes of the pyridine
Assignment of the vibrational spectra of N,N0-bis(2-pyridylmethyl)-ethylenediamine
tetrahydrochloride dihydrate (band positions in cmꢁ1).
moieties [19] could be identified. They include two quadrant
stretching modes (ca. 1615 and 1510 cmꢁ1), two semicircle
stretching vibrations (ca. 1470 and 1400 cmꢁ1) and the radial
mode (ca. 1010 cmꢁ1). Also typical in-plane and out-of-plane
ring bends (three bands) were identified.
Infrared
Raman
Assignments
3299 vs
3115/3075/3061 vw
2992/2946 w
2745 sh, 2679 vs, 2598 sh 2680 w, 2585 w,br
2425 m
m
m
m
m
(H2O)
3086/3035 vw
2987/2964 vw
(CH)py
(CH2)
(NH+)py +
– As shown in Table 4 some other skeletal and deformational
modes were also assigned.
m
(> NHþ2
)
2440 w
Combination band
2009/1995/1895/1848 w
1728 vw
1633 vs, 1615 vs 1585 sh 1636 s, 1616 m
3.3. NMR spectra
d(H2O) + m )
(CC)py + d(> NHþ2
13
We have recorded the 1H and C NMR spectra of N,N0-bis(2-
1542 m, 1512 vs
1469 vs
1440 w
1402 m, 1375 m
1329 m, 1302 s
1235 s
1179 m
1158 s
1097 w
1046 s
1543 w, 1510 vw
1478 w
1455 vs
1397 w, 1341 m
1315 w, 1259 w
1235 vs
1159 s
1136 w
1099vs/1080 sh
1052 vs
m
m
(CC)py
(CC)py
pyridylmethyl)-ethylenediamine tetrahydrochloride. These spectra
are clearly compatible with the crystal structure of the molecule, as
shown by the data presented in Table 5, analyzed on the basis of
some standard references [23,24].
d(CH2)
m
s
(CC)py
(CH2)
d(NH+)py
m
m
m
(C–N)
(CC)CH2
(CC)CH2/py
(CH)py
Acknowledgements
q
1007 s
1011 vs
968 w, 880 vw
831 vs
738 m
629 vs
m(CC)py
This work was supported by the Universidad Nacional de La
Plata, the Universidad Nacional de Rosario, by CONICET (PIP
1529), and by ANPCyT (PME06 2804 and PICT06 2315) of Argen-
tina. The authors are members of the Research Career from
CONICET.
951 s, 883 s
845 w, 778 vs
736 w
675 s, br, 626 s
610 m
dw(NH+)py
dw(CH)py
d(CC)py
d(CC)py
d(CC)py +
d(CN)
603 w
523 m
q(H2O)
508 s
vs: very strong; s: strong; m: medium; w: weak; vw: very weak; sh: shoulder; br:
broad; py: pyridine.
References
[1] C. Deraeve, M. Pitié, H. Mazarguil, B. Meunier, New J. Chem. 31 (2007) 193.
[2] C. Deraeve, C. Boldron, A. Maraval, H. Mazarguil, H. Gornitzka, L. Vendier, M.
Pitié, B. Meunier, Chem. Eur. J. 14 (2008) 682.
[3] J. Zinczuk, O.E. Piro, E.E. Castellano, E.J. Baran, J. Mol. Struct. 892 (2008) 216.
[4] A. Lakatos, E. Zsigó, D. Hollender, N.V. Nagy, L. Fülöp, D. Simon, Z. Bozsó, T. Kiss,
Dalton Trans. 39 (2010) 1302.
[5] H. Cheng, B. Djukic, H.A. Jenkins, S.I. Gorelski, M.T. Lemaire, Can. J. Chem. 88
(2010) 954.
Table 5
13
Analysis of the 1H- and C NMR spectra of N,N0-bis(2-pyridylmethyl)-ethylenedia-
mine tetrahydrochloride (atom numbering as in Fig. 1, chemical shifts, d, in ppm,
downfield from TMS, and coupling constants, J, in Hz)a.
[6] O. Andersen, Mini Rev. Med. Chem. 4 (2004) 11.
1H (D2O)
13C (D2O)
d = 3.60 (s, 4H, H-8); d = 4.65 (s, 4H, H-7); d = 7.94 (dd,
J4,5 = 7.9, J4,3 = 6.4, 2H, H-4); d = 8.05 (d, J6,5 = 7.9, 2H, H-6);
d = 8.48 (ddd, J5,4 = 7.9, J5,6 = 7.9, J5,3 = 1.5, 2H, H-5); d = 8.72
(d, J3,4 = 6.4, 2H, H-3)
d = 43.64 (C-8); d = 47.89 (C-7); d = 127.91 (C-4); d = 128.07
(C-6); d = 143.63 (C-3); d = 144.66 (C-1); d = 147.15 (C-5)
[7] L.E. Scott, C. Orvig, Chem. Rev. 109 (2009) 4885.
[8] E.J. Baran, Curr. Med. Chem. 17 (2010) 3658.
[9] N. Arulsamy, D.J. Hodgson, J. Glerup, Inorg. Chim. Acta 209 (1993) 61.
[10] M.A. Hendrichs, D.J. Hodgson, K. Michelsen, E. Pedersen, Inorg. Chem. 23
(1984) 3174.
[11] A. Marvilliers, S. Parsons, E. Rivière, J.P. Audière, T. Mallah, Chem. Commun.
(1999) 2217.
a
[12] M. Martinho, F. Banse, J. Sainton, C. Philouze, R. Guillot, G. Blain, P. Dorlet, S.
Lecomte, J.J. Girerd, Inorg. Chem. 46 (2007) 1709.
[13] L. Xu, I.A. Setyawati, J. Pierreroy, M. Pink, V.C. Young Jr., B.O. Patrick, S.J. Rettig,
C. Orvig, Inorg. Chem. 39 (2000) 5958.
Spectral structure: s: singlet; d: doublet; dd: double doublet; ddd: double
double doublet.
[14] CrysAlisPro, Oxford Diffraction Ltd., version 1.171.33.48, release 15-09-2009
CrysAlis 171 NET.
[15] G.M. Sheldrick, SHELXS-97. Program for Crystal Structure Resolution,
University of Göttingen, Göttingen, Germany, 1997.
[16] M. Sheldrick, SHELXL-97. Program for Crystal Structure Analysis, University of
Göttingen, Göttingen, Germany, 1997.
– The higher frequency region in the FTIR spectrum is dominated
by two very strong and relatively broad bands. That at higher
energies involves the OH-stretching motions of the water mol-
ecules. Its position suggests the existence of hydrogen bonds of
medium strength [22]. The corresponding deformational mode
was observed at 1633 cmꢁ1 probably partially coupled with
other vibrational modes (cf. Table 4) and a librational or rocking
mode of the water molecules was also tentatively assigned in
the lower spectral range.
[17] C.K. Johnson, ORTEP-II.
A Fortran Thermal-Ellipsoid Plot Program. Report
ORNL-5318, Oak Ridge National Laboratory, Tennessee, USA, 1976.
[18] K. Kanamori, E. Kameda, K. Okamoto, Bull. Chem. Soc. Jpn. 69 (1996) 2901.
[19] D. Lin-Vien, N.B. Colthup, W.G. Fateley, J.G. Grasselli, The Handbook of Infrared
and Raman Characteristic Frequencies of Organic Molecules, Academic Press,
Boston, 1991.
[20] B. Smith, Infrared Spectral Interpretation, CRC Press, Boca Raton, 1999.
[21] B. Schrader, Raman/Infrared Atlas of Organic Compounds, second ed., Verlag
Chemie, Weinheim, 1989.
– The second high energy band involves the NH-stretching vibra-
tions of the pyridinium moiety and the secondary amine groups
(—NHþ2 —).
[22] H. Siebert, Anwendungen der Schwingungsspektroskopie in der
Anorganischen Chemie, Springer, Berlin, 1966.
– Between these two strong bands a number of weaker ones,
related to the CH stretching modes of the pyridine and CH2,
groups are observed. A number of very weak IR bands located
between 2009 and 1728 cmꢁ1 could not be unambiguously
assigned. They probably originate in combination or overtone
modes.
[23] H. Günther, NMR-Spektroskopie. Eine Einführung, Georg Thieme Verlag,
Stuttgart, 1973.
[24] B. Breitmaier, Structure Elucidation by NMR in Organic Chemistry, J. Wiley,
Chichester, 1993.