Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
pyrene,7a borazaroindene,10 and borazarotriphenylene11), the
chemistry of the biologically more relevant monocyclic 1,2-
azaborines has not been extensively explored, presumably
due to limited synthetic access. Dewar and White pioneered
the first syntheses of 1,2-azaborines in the early 1960s and
demonstrated that these compounds have substantial aromatic
character.12 More recently, Ashe has developed two comple-
mentary synthetic strategies for 1,2-azaborines: (1) a ring
expansion of lithium azaborolides13 and (2) a ring-closing
metathesis (RCM)-oxidation sequence.14 Ashe’s elegant
preparative routes established a more general approach to
BN-containing aromatic ring structures.
core, we set out to address this synthetic limitation. In this
paper, we establish the first general synthesis of B-substituted
1,2-azaborines that includes not only a variety of carbon-
based substituents but also a number of unprecedented
examples of B-heteroatom substitutions (Figure 1).
We envisioned that an intermediate bearing a good leaving
group on boron, e.g., A in Scheme 1, could serve as a
Scheme 1. Synthetic Strategy
Despite the groundbreaking advances made to date,
significant synthetic challenges remain. For instance, the
simplest member in the family of 1,2-azaborines, compound
1, is still elusive. More generally, the scope with respect to
the boron substituent (R2 in Figure 1) provided by current
versatile precursor toward a wide range of B-substituted 1,2-
azaborines via nucleophilic substitution.16 Heterocycle A
could be approached from the ring-opened precursor C via
RCM followed by dehydrogenation. However, neither the
RCM nor the oxidation have been performed in the presence
of the reactive and labile B-Cl bond. Gratifyingly we
determined that RCM of precursor 2 proceeds smoothly in
the presence of 2% first-generation Grubbs catalyst to
generate heterocycle 3 (eq 1), which is a testimony to the
robustness and the versatility of modern RCM protocols.17
Figure 1. Scope of boron substituents in 1,2-azaborines.
The aromatization of 3 proved to be more challenging.18
Our initial attempts using DDQ14 met with failure (Table 1,
entry 1). However, optimization of conditions showed that
palladium can serve as a catalyst for this transformation
(entry 2).11,12b The presence of a hydrogen acceptor (i.e.,
cyclohexene) further improves the yield (entry 3). A survey
synthetic methods is fairly limited. To the best of our
knowledge, carbon-9a,13 and oxygen-based15 groups are the
only boron substituents in all of the monocyclic 1,2-
azaborines that have been isolated to date. In order to take
full advantage of the BN-isosterism of the ubiquitous benzene
(6) Zhou, H.-B.; Nettles, K. W.; Bruning, J. B.; Kim, Y.; Joachimiak,
A.; Sharma, S.; Carlson, K. E.; Stossi, F.; Katzenellenbogen, B. S.; Greene,
G. L.; Katzenellenbogen, J. A. Chem. Biol. 2007, 14, 659-669.
(7) For examples in materials science, see: (a) Bosdet, M. J. D.; Piers,
W. E.; Sorensen, T. S.; Parvez, M. Angew. Chem., Int. Ed. 2007, 46, 4940-
4943. (b) Bosdet, M. J. D.; Jaska, C. A.; Piers, W. E.; Sorensen, T. S.
Parvez, M. Org. Lett. 2007, 9, 1395-1398. (c) Lee, B. Y.; Bazan, G. C. J.
Am. Chem. Soc. 2000, 122, 8577-8578.
Table 1. Aromatization of Heterocycle 3: Optimization
Survey
(8) Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073-
3076.
(9) (a) Fang, X.; Yang, H.; Kampf, J. W.; Holl, M. M. B.; Ashe, A. J.,
III. Organometallics 2006, 25, 513-518. (b) Paetzold, P.; Stanescu, C.;
Stubenrauch, J. R.; Bienmu¨ller, M.; Englert, U. Z. Anorg. Allg. Chem. 2004,
630, 2632-2640. (c) Dewar, M. J. S.; Gleicher, G. J.; Robinson, B. P. J.
Am. Chem. Soc. 1964, 86, 5698-5699. (d) Dewar, M. J. S.; Dietz, R. J.
Chem. Soc. 1959, 2728-2730.
entry
conditions
yielda (%)
1
2
3
4
5
6
1 equiv of DDQ, pentane, 35 °C, 24 h
Pd/C (20 mol %), pentane 80 °C, 16 h
Pd/C (20 mol %), cyclohexene, 80 °C, 16 h
Ru/C (20 mol %), cyclohexene, 80 °C, 16 h
Rh/Al2O3 (20 mol %), cyclohexene, 80 °C, 16 h 23
Pd black (20 mol %), cyclohexene,
80 °C, 16 h
14
31
43
1
(10) Ashe, A. J., III; Yang, H.; Fang, X.; Kampf, J. W. Organometallics
2002, 21, 4578-4580.
(11) Culling, G. C.; Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc.
1964, 86, 1125-1127.
75 (57)b
(12) (a) Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc. 1962, 84, 3782.
(b) White, D. G. J. Am. Chem. Soc. 1963, 85, 3634-3636.
(13) Ashe, A. J., III; Fang, X.; Fang, X.; Kampf, J. W. Organometallics
2001, 20, 5413-5418.
7
Pd(PPh3)4 (10 mol %), benzene, 80 °C, 16 h
0
a Determined by 11B NMR analysis versus a calibrated internal standard.
b Isolated yield in parentheses (see the Supporting Information for details).
(14) Ashe, A. J., III; Fang, X. Org. Lett. 2000, 2, 2089-2091.
(15) Davies, K. M.; Dewar, M. J. S. J. Am. Chem. Soc. 1967, 89, 6294-
6297.
4906
Org. Lett., Vol. 9, No. 23, 2007