1
250
Can. J. Chem. Vol. 78, 2000
3
+
result thus shows that the La -promoted methanolysis
mechanism cannot involve attack of free methoxide ion
since that should result in much higher rate constants for 2
than for 1, contrary to what is observed. The slower reaction of
the lanthanide reaction with 2 can be accommodated by a pro-
References
1. (a) A. Blasko and T.C. Bruice. Acc. Chem. Res. 32, 475 (1999)
and refs. therein; (b) N.H. Williams, B. Tasaki, M. Wall, and J.
Chin. Acc. Chem. Res. 32, 485 (1999) and refs. therein;
(c) R.A. Moss, B.D. Park, P. Scrimin, and G. Ghirlanda. J.
Chem. Soc. Chem. Comm. 1627 (1995); (d) R.A. Moss, J.
Zhang, and K. Bracken. J. Chem. Soc. Chem. Comm. 1639
3+
-
cess involving the dimeric complex (La (CH O ) (CH OH) )
3), having a total positive charge of +4, wherein electro-
static repulsion causes a decrease in the rate for the posi-
tively charged substrate 2 relative to neutral 1.
It has been shown in the case of a structurally similar
2
3
2
3
m
(
(1997); (e) J. Sumaoka, S. Miyama, and M. Komiyama. J. Chem.
Soc. Chem. Comm. 1755 (1994); (f) J.R. Morrow, L.A. Buttrey,
and K.A. Berback. Inorg. Chem. 31, 16 (1992); (g) J.R. Mor-
row, L.A. Buttrey, V.M. Shelton, and K.A. Berback. J. Am.
Chem. Soc. 114,1903 (1992); (h) R. Breslow and B. Zhang. J.
Am. Chem. Soc. 116, 7893 (1994); (i) N. Takeda, M. Irisawa,
and M. Komiyama. J. Chem. Soc. Chem. Comm. 2773 (1994);
3
+
Co -hydroxide dimeric complex, that bridging hydroxides
1
0
do not possess nucleophilic activity, being at least 10 times
less active than the deprotonated oxo-bridged forms (10).
For the present methoxy-bridged dimer (3) deprotonation is
impossible so the only way to generate an active nucleophile
within the dimeric complex requires temporary breakage of
a lanthanum—methoxy bond. This creates a scissors-like
(j) P. Gómez-Tagle and A.K. Yatsimirsky. J. Chem. Soc. Dalton
Trans. 2957 (1998).
2
.
(a) T. Takarada, R. Takahashi, M. Yashiro, and M. Komiyama.
J. Phys. Org. Chem. 11, 41 (1998); (b) M. Yashiro, T. Takarada,
S. Miyama, and M. Komiyama. J. Chem. Soc. Chem.
Commun. 1757 (1994).
3
+
–
structure where the La -bound CH O is delivered to the
3
3
+
C=O carbon with the second La functioning as a Lewis
acid to stabilize the developing negative charge on the car-
bonyl oxygen as in 4.
3. (a) T.J. Przystas and T.H. Fife. J. Chem. Soc. Perkin Trans. 2,
3
2
93 (1990) and refs. therein; (b) J. Suh. Acc. Chem. Res. 25,
73 (1992) and refs. therein; (c) P. Tecilla, U. Tonellato, F.
Veronese, F. Fellugg, and P. Scrimin. J. Org. Chem. 62, 7621
1997); (d) J. Chin, V. Jubian, and K. Mrejen. J. Chem. Soc.
(
Chem. Commun. 1326 (1990); (e) L. Meriwether and F.
Westheimer. J. Am. Chem. Soc. 78, 5119 (1956); (f) T.J. Grant
and R.W. Hay. Aust. J. Chem. 18, 1189 (1965); (g) J.T. Groves
and R.M. Dias. J. Am. Chem. Soc. 101, 1033 (1979); (h) J.T.
Groves and R.R. Chambers. J. Am. Chem. Soc. 106, 630
(
(
1984); (i) J.T. Groves and J.R. Olson. Inorg. Chem. 24, 2715
1985); (j) L. Sayre, K.V. Reddy, A.R. Jacobson, and W. Tang.
Inorg. Chem. 31, 935 (1992); (k) T.H. Fife. Acc. Chem. Res.
2
1
6, 325 (1993); (l) T.H. Fife and R. Bembi. J. Am. Chem. Soc.
15, 11358 (1993); (m) T.N. Parac and N.M. Kostic′. J. Am.
The above study indicates several beneficial features stem-
3
+
Chem. Soc. 118, 51 (1996); (n) L. Singh and R.N. Ram. J.
Org. Chem. 59, 710 (1994); (o) P.A. Sutton and D.A.
Buckingham. Acc. Chem. Res. 20, 357 (1987); (p) E. Kimura,
I. Nakamura, T. Koike, M. Shionoya, Y. Kodama, T. Ikeda, and
M. Shiro. J. Am. Chem. Soc. 116, 4764 (1994); (q) T.N. Parac,
G.M. Ullman, and N.M. Kostic′. J. Am. Chem. Soc. 121, 3127
ming from studying La -promoted methanolysis relative to
3
+
La in water. Methanolyses have not been studied as exten-
sively as hydrolyses, undoubtedly due to the problems of
controlling and measuring the pH which now have been
overcome (5). By a combination of potentiometric titration
and kinetic data, we have shown that catalytically active
(
1999), and refs. therein; (r) A.M. Ridder and R.M. Kellogg.
3+
La dimers (3) are formed above the pK of the metal bound
a
In Comprehensive supramolecular chemistry. Edited by Y. Murakami.
Vol. 4. Supramolecular reactivity and transport: bioorganic
systems. Chap. 11. Elsevier Science Ltd., Oxford. 1996; (s) J.
Chin. Acc. Chem. Res. 24, 145 (1991), and refs. therein.
. J. MacB. Harrowfield, V. Norris, and A.M. Sargeson. J. Am.
Chem. Soc. 7282 (1976).
. (a) E. Bosch, F. Rived, M. Rosés, and J. Sales. J. Chem. Soc.
Perkin Trans. 2, 1953 (1999); (b) E. Bosch, P. Bou, H. Allemann,
and M. Rosés. Anal. Chem. 3651 (1996); (c) F. Rived, M.
Rosés, and E. Bosch. Anal. Chim. Acta, 374, 309 (1998).
CH OH. The fact that these dimers are far more soluble in
3
3+
methanol than the corresponding La -hydroxides are in aque-
ous solution simplifies kinetic studies and obviates the ne-
cessity of creating complex ligands to stabilize the dinuclear
catalytically active core, as is the case in aqueous studies (1,
4
5
8
, 10). The success observed here with the simple amides
3
+
and the fact that the La -dimer acts on the C=O unit sug-
3
+
gests that La -catalyzed methanolyses of more biologically
relevant amides, peptides, and oligonucleotides would be in-
teresting, and we will report on these studies in due course.
6. L.S. Smith, D.C. McCain, and D.L. Wertz. J. Am. Chem. Soc.
8, 5125 (1976).
9
7
8
. B.K. Takasaki and J. Chin. J. Am. Chem. Soc. 117, 8582 (1995).
. P. Hurst, B.K. Takasaki, and J. Chin. J. Am. Chem. Soc. 118,
9982 (1996).
Acknowledgment
The authors gratefully acknowledge financial support of
this research by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC). We thank Dr. Elisabeth
Bosch for personal communications on determining the pH
of buffered methanol solutions.
9. R.J. Sundberg and R.B. Martin. Chem. Rev. 74, 471 (1974).
10. (a) D. Wahnon, A.-M. Lebuis, and J. Chin. Angew. Chem. Int.
Engl. 34, 2412 (1995); (b) N.H. Williams, A.-M. Lebuis, and
J. Chin. J. Am. Chem. Soc. 121, 3341 (1999).
©
2000 NRC Canada