Journal of the American Chemical Society p. 17245 - 17259 (2019)
Update date:2022-08-16
Topics:
Liu, Tianfei
Tyburski, Robin
Wang, Shihuai
Fernández-Terán, Ricardo
Ott, Sascha
Hammarstr?m, Leif
Proton-coupled electron transfer (PCET) was studied in a series of tungsten hydride complexes with pendant pyridyl arms ([(PyCH2Cp)WH(CO)3], PyCH2Cp = pyridylmethylcyclopentadienyl), triggered by laser flash-generated RuIII-tris-bipyridine oxidants, in acetonitrile solution. The free energy dependence of the rate constant and the kinetic isotope effects (KIEs) showed that the PCET mechanism could be switched between concerted and the two stepwise PCET mechanisms (electron-first or proton-first) in a predictable fashion. Straightforward and general guidelines for how the relative rates of the different mechanisms depend on oxidant and base are presented. The rate of the concerted reaction should depend symmetrically on changes in oxidant and base strength, that is on the overall ?G0 PCET, and we argue that an "asynchronous" behavior would not be consistent with a model where the electron and proton tunnel from a common transition state. The observed rate constants and KIEs were examined as a function of hydrostatic pressure (1-2000 bar) and were found to exhibit qualitatively different dependence on pressure for different PCET mechanisms. This is discussed in terms of different volume profiles of the PCET mechanisms as well as enhanced proton tunneling for the concerted mechanism. The results allowed for assignment of the main mechanism operating in the different cases, which is one of the critical questions in PCET research. They also show how the rate of a PCET reaction will be affected very differently by changes of oxidant and base strength, depending on which mechanism dominates. This is of fundamental interest as well as of practical importance for rational design of, for example, catalysts for fuel cells and solar fuel formation, which operate in steps of PCET reactions. The mechanistic richness shown by this system illustrates that the specific mechanism is not intrinsic to a specific synthetic catalyst or enzyme active site but depends on the reaction conditions.
View MoreZhejiang Quzhou Zhengbang Organosilicon Co.,ltd.
Contact:86-570-3375195
Address:No.17 Lingqing Road technology industry,Quzhou City,Zhejiang Province,China
Contact:+852 83038667
Address:Room 1502, 15th Floor, SPA Centre,53-55 Lockhart Road, Wanchai, Hong Kong
Contact:+1-973-357-0577
Address:10 Taft Rd.
Contact:0792-8228321
Address:10TH Floor No.121 binjiang Road Xunyang District
Nanjing Chemlin Chemical Co., Ltd.
website:http://www.echemlin.cn
Contact:+86-25-83697070
Address:Rm.902 Longyin Plaza, No. 217 Zhongshan Rd.(N) Nanjing 210009,China
Doi:10.1039/c5ra27902j
(2016)Doi:10.1016/j.poly.2013.02.020
(2013)Doi:10.1016/0022-1902(66)80352-4
(1966)Doi:10.1016/0040-4039(94)88365-3
(1994)Doi:10.1002/pola.24934
(2011)Doi:10.1007/s11164-014-1689-3
(2015)