An Optically and Catalytically Active Rhodium(I) Complex
quency of Ξ(103Rh) ϭ 3.16 MHz. Optical rotations were measured 4JP1C14 ϭ 2.5 Hz, C14), 130.79 (d, 4JP1C14Ј ϭ 2.5 Hz, C14Ј), 131.11
SHORT COMMUNICATION
4
2
in a 1-dm cell with a PerkinϪElmer 241 polarimeter.
(d, JP2C24Ј ϭ 2.0 Hz, C24Ј), 131.20 (d, JP1C12 ϭ 12.0 Hz, C12),
1
J
31.30 (d, 1
J
P2C21Ј ϭ 48 Hz, C21Ј), 131.30 (s, C4Ј), 131.47 (d,
P2C22Ј ϭ 11.5 Hz, C22Ј),
P2C24 ϭ 3 Hz, C22), 132.40 (d, 2JP1C12Ј ϭ 12.0 Hz,;
J
Methylbinapium 2: (R)-Methylbinapium iodide 2·I (m.p. 307Ϫ310
3
2
P2C10Ј ϭ 15 Hz, C10Ј), 132.00 (d,
J
°
C) was prepared in 97% yield from (R)-binap 1 according to de-
32.35 (d, 4
1
[
13,14]
scribed procedures.
tained quantitatively by metathesis of 2·I and [NH
The tetrafluoroborate salt 2·BF
][BF
4
was ob-
1
4
C12Ј), 132.50 (d, JP1C11Ј ϭ 47.5 Hz, C11Ј), 134.44 (d, JP2C5Ј
.0 Hz, C5Ј), 134.72 (d,
P1C11 ϭ 46.2 Hz, C11), 142.27 (d, JP2C1Ј ϭ 21.0 Hz, C1Ј), 146.21
dd, JP2C2Ј ϭ 49.0, JP1C2Ј ϭ 3.0 Hz, C2Ј) ppm.
ϭ
4
4
].
2
2
J
(
JP2C22 ϭ 13.5 Hz, C22), 137.62 (d,
1
2
Complex 3·BF4: (R)-Binapium tetrafluoroborate 2·BF
.16 mmol) and [Rh(cod) ][BF ] (0.065 g, 0.16 mmol) were mixed
4
(0.115 g,
1
2
0
2
4
in ethanol (15 mL). The suspension was heated, and the resulting
deep orange solution was refluxed for 20 h. The solvent was then
Hydrogenation Procedure: Complex 3·BF (0.005 g, 0.006 mmol)
4
and (Z)-α-acetamidocinnamic acid (0.123 g, 0.6 mmol) were placed
in a glass vessel in a steel autoclave under 1 bar of nitrogen atmo-
sphere. Methanol was then syringed in, and the autoclave was pres-
surized to 21 bar with hydrogen gas. After stirring at 25 °C for 40 h,
the autoclave was opened and the solvent evaporated to dryness to
31
evaporated under reduced pressure. P NMR analysis of the crude
material indicated the presence of complex 3·BF along with traces
): δ ϭ 26.52 (s, 1 P,
PϭO)]. Further purification was
achieved by chromatography over silica gel eluting with CH Cl
4
3
1
of binapium oxide [ P NMR (81 MHz, CDCl
3
ϩ
2 2
MePh P ), 31.67 (s, 1 P, Ph
2
2
/
1
give an orange solid. H NMR analysis of the crude material in
acetone mixtures of increasing polarity (from 100:0 to 80:20). The
most colored fractions were collected and the solvents evaporated,
leading to an orange solid (0.060 g, 45%) which was used for full
spectroscopic analysis and optical rotation measurement. TLC
6
[D ]DMSO indicated an exclusive 95% conversion of the staring
material to N-acetylphenylalanine. The catalyst residue was re-
moved by treatment with a 5 aqueous NaOH solution and wash-
ing with Et
extracted with Et
2
O. After acidification with HCl, the aqueous layer was
O. The organic layer was dried over MgSO and
(
SiO
2 2 2 f
, CH Cl /acetone 80:20) R ϭ 0.60. (ϩ)ES-MS: m/z ϭ 741.2
25
25
2
4
with consistent isotopic pattern. [α]
D
ϭ ϩ175, [α]578 ϭ ϩ202.
). B (128.4 MHz, CDCl ): δ ϭ
4
). Other NMR assignments were
the solvents evaporated giving a white powder (0.87 g) consisting
25
11
[α]546 ϭ ϩ278 (c ϭ 0.1, CH
2
Cl
2
3
in 95% N-acetylphenylalanine and 5% unchanged olefin according
1
Ϫ0.59 (q,
J
FB ϭ 1.0 Hz, BF
1
25
to H NMR spectroscopy. [α]
D
ϭ ϩ0.007 (c ϭ 1, EtOH).
1
31
31
1
13
1
13
1
achieved with the help of H{ P}, P{ H}, C{ H}, C{ H,
3
1
1
31
1
31 103
1
1
13
31
P}, H- P{ H} HMQC, P- Rh J-HMQC, H- C{ P},
1
1
31
1
1
1
31
H- H{ P} GS-HMQC, H- H GS-COSY45, H{ P} dpfgse
[
[
1]
1
1
31
M. T. Reetz, G. Mehler, Angew. Chem. 2000, 112, 4047Ϫ4049;
M. T. Reetz, G. Mehler, Angew. Chem. Int. Ed. 2000, 39,
3889Ϫ3890.
m
TOCSY, and H- H{ P} dpfgse (t ϭ 600 ms) NOE experiments.
31P NMR (162 MHz, CDCl
): δ ϭ 57.89 (dd, 1JPRh ϭ 206.0, 2JPP
3
ϭ
2] [2a]
P), 19.28 (dd, 1JPRh ϭ 199.6, 2JPP ϭ 38.6 Hz,
C. Claver, E. Fernandez, A. Gillon, K. Heslop, D. J. Hyett,
A. Martorell, A. G. Orpen, P. G. Pringle, Chem. Commun.
3
8.6 Hz, NaphtPh
2
P) ppm. 1 Rh NMR (12.6 MHz, CDCl
03
MePh
2
3
): δ ϭ Ϫ391 (dd,
000, 961Ϫ962. [ M. van den Berg, A. J. Minnaard, E. P.
2b]
2
1
PRh ϭ 206.0, 1JPRh ϭ 199.6 Hz, PPЈRh ) ppm. H NMR
ϩ
1
J
Schudde, J. van Esch, A. H. M. de Vries, J. G. de Vries, B. L.
3
(400 MHz, CDCl
3
): δ ϭ 1.63 (ddd, 2
J
P1H ϭ 9.3 Hz,
J
RhH
ϭ
[2c]
Feringa, J. Am. Chem. Soc. 2000, 122, 11539Ϫ11450.
A.
4
3
1
3
.3 Hz, JP2H ϭ 0.6 Hz, 3 H, P1CH ), 5.44 (dt, JH4H3 ϭ 6.2 Hz,
Bayer, P. Murszat, U. Thewalt, B. Rieger, Eur. J. Inorg. Chem.
3
2JP2H4 ഠ 1 Hz, 1 H, H4), 6.56 (dd, 3
[2d]
J
J
P1H4
ഠ
J
H12ЈH13Ј ϭ 7.6,
2002, 2614Ϫ2624.
M. van den Berg, R. M. Haak, A. J.
3
3
P1H12Ј ϭ 11.8 Hz, 2 H, H12Ј), 6.77 (dd,
JH22ЈH23Ј ϭ 7.7,
Minnaard, A. H. M. de Vries, J. G. de Vries, B. L. Feringa,
Adv. Synth. Catal. 2002, 344, 1003Ϫ1007.
3]
3JP2H22Ј ϭ 12.0 Hz, 2 H, H22Ј), 7.00 (dt, JH23ЈH22Ј ഠ JH23ЈH24Ј
3
3
ϭ
ഠ
ϭ
[
[
.6, 4JP2H23Ј ϭ 1.3 Hz, 2 H, H23Ј), 7.00 (dt,
3
T. Hayashi, Acc. Chem. Res. 2000, 33, 354Ϫ362.
7
J
H13ЈH12Ј
4] [4a]
3
H13ЈH14Ј ϭ 7.6, 4JP1H13Ј ϭ 1.3 Hz, 2 H, H13Ј), 7.07 (dd, JH2H3
3
K. Kitayama, Y. Uozumi, T. Hayashi, Chem. Commun.
J
1995, 1533Ϫ1534. [ K. Kitayama, H. Tsuji, Y. Uozumi, T.
4b]
.2 Hz, 2JP1H2 ϭ 0.7 Hz, 1 H, H2), 7.07 (dm, JH9H8 ഠ 7 Hz, 1 H,
3
6
Hayashi, Tetrahedron Lett. 1996, 4169Ϫ4172.
3
3
H9), 7.11 (dm, JP1H12 ϭ 11.8 Hz, 2 H, H12), 7.18 (ttd, JH24ЈH23Ј
ϭ
[5]
[6]
[7]
T. Hayashi, M. Ishigedani, J. Am. Chem. Soc. 2000, 122,
7
.8, 4 H24ЈH22Ј ϭ 1.3, 3
J JP2H24Ј ϭ 1.8 Hz, 1 H, H24Ј), 7.21 (ttd,
9
76Ϫ977.
3
H14ЈH13Ј ϭ 7.5, 4JH14ЈH12Ј ϭ 1.3, 5JP1H14Ј ϭ 1.8 Hz, 1 H, H14Ј),
.25 (dm, 5JP2H24 ϭ 2.0 Hz, 1 H, H24), 7.27 (dm, JP2H23 ϭ 2.0 Hz,
J
R. Noyori, R. H. Takaya, Acc. Chem. Res. 1990, 23, 345Ϫ350,
and references therein.
4
7
2
3
3
H, H23), 7.27 (dd, JH3ЈH4Ј ϭ 8.4, JP2H3Ј ϭ 8.5 Hz, 1 H, H3Ј),
T. J. Geldbach, P. S. Pregosin, Eur. J. Inorg. Chem. 2002,
1907Ϫ1918.
3
7
.33 (d, JH6H7 ϭ 7.2 Hz, 1 H, H6), 7.33 (m, 1 H, H14), 7.35 (dm,
[
8] [8a]
4
3
3
N. Feiken, P. S. Pregosin, G. Trabesinger, Organometallics
1997, 16, 537Ϫ543. [ N. Feiken, P. S. Pregosin, G. Trabes-
inger, Organometallics 1997, 16, 3735Ϫ3736. [ N. Feiken, P.
S. Pregosin,[8d]G. Trabesinger, Organometallics 1997, 16,
J
P1H13 ϭ 2.0 Hz, 2 H, H13), 7.51 (t, JH8H7 ϭ JH8H9 ϭ 7.2 Hz, 1
8b]
3
3
H, H8), 7.55 (m, 1 H, H8Ј), 7.57 (t, JH3H2 ഠ JH3H4 ϭ 6.2 Hz, 1
8c]
H, H3), 7.57 (m, 1 H, H7), 7.66 (dt, 3JH7ЈH6Ј ഠ 3
JH7ЈH8Ј ϭ 8.3,
4
H7ЈH9Ј ϭ 1.2 Hz, 1 H, H7Ј), 7.82 (dm, 3JP2H22 ϭ 7.8 Hz, 2 H,
J
5756Ϫ5762.
C. J. den Reijer, P. Dotta, P. S. Pregosin, A.
3
3
H22), 7.82 (d, JH9ЈH8Ј ϭ 8.6 Hz, 1 H, H9Ј), 7.91 (dd, JH4ЈH3Ј
8
ϭ
[8e]
Albinati, Can. J. Chem. 2001, 79, 693Ϫ704.
D. Drago, P. S. Pregosin, J. Orgamomet. Chem. 2002,
T. J. Geldbach,
4
3
.4, JP2H4Ј ϭ 1.6 Hz, 1 H, H4Ј), 7.98 (d, JH6ЈH7Ј ϭ 8.3 Hz, 1 H,
13
1
3
H6Ј) ppm. C{ H} NMR (100 MHz, CDCl ): δ ϭ 17.29 (ddd,
643Ϫ644, 214Ϫ222.
A. S. C. Chan, S. Laneman, Inorg. Chim. Acta 1994, 223,
165Ϫ167.
1
2
3
1
[9]
J
PC ϭ 32, JRhC ϭ 2, JP2C ϭ 2 Hz, P1CH
3
), 97.32 (ddd, JRhC4
ϭ
1
5
, 3 P1C4 ϭ 4.8, 3
J
JP2C4 ϭ 8.0 Hz, C4), 97.56 (ddd, JRhC2 ϭ 5,
[
10]
2
P1C2 ϭ 4.0, JP2C2 Ͻ 1 Hz, C2), 101.74 (ddd, JRhC3 ϭ 4, 2JP1C3
2
1
C. J. den Reijer, M. Wörle, P. S. Pregosin, Organometallics
2000, 19, 309Ϫ316.
11] [11a]
J
Ͻ 1, JP2C3 ϭ 2.0 Hz, C3), 105.54 (ddd, JRhC1 ϭ 5, 2JP1C1 ϭ 10.4,
2
1
[
2
J. J. Brunet, R. Chauvin, G. Commenges, B. Donnadieu,
JP2C1 ϭ 4.3 Hz, C1), 119.67 (s, C5),122.36 (s, C10), 122.90 (s, C9),
P. Leglaye, Organometallics 1996, 5, 1752Ϫ1754. [
vin, Eur. J. Inorg. Chem. 2000, 577Ϫ591.
11b]
R. Chau-
3
125.46 (s, C6), 126.44 (s, C9Ј), 127.71 (s, C3Ј), 128.78 (d, JP1C13Ј
ϭ
3
10.5 Hz, C13Ј), 128.78 (s, C6Ј), 128.97 (d,
JP2C23Ј ϭ 10.5 Hz,
[12]
[13]
L. Viau, R. Chauvin, J. Organomet. Chem. 2002, 654,
80Ϫ186.
3
C23Ј), 128.94 (s, C8Ј),129.19 (d, JP1C13 ϭ 10.5 Hz, C13), 129.43
1
3
(
(
s, C7Ј), 129.66 (s, C7), 129.69 (d, JP2C23 ϭ 11.5 Hz, C23), 129.84
dd, JP2C21 ϭ 52, JRhC21 ϭ 3 Hz, C21), 130.08 (s, C8), 130.68 (d,
P. Leglaye, B. Donnadieu, J.-J. Brunet, R. Chauvin, Tetrahed-
ron Lett. 1998, 39, 9179Ϫ9182.
1
2
Eur. J. Inorg. Chem. 2003, 207Ϫ212
211