Fluorescent Probe for Dual‐Imaging of Viscosity and H2O2
Chin. J. Chem.
[7] Silzer, T. K.; Phillips, N. R. Etiology of type 2 diabetes and Alzheimer's
disease: Exploring the mitochondria. Mitochondrion 2018, 43, 16–24.
[8] Barnham, K. J.; Masters, C. L.; Bush, A. I. Neurodegenerative diseases
and oxidative stress. Nat. Rev. Drug. Discov. 2004, 3, 205–214.
[9] Yang, Z.; He, Y.; Lee, J. H.; Park, N.; Suh, M.; Chae, W. S.; Kim, J. S. A
self‐calibrating bipartite viscosity sensor for mitochondria. J. Am.
Chem. Soc. 2013, 135, 9181–9185.
[10] Yang, Z. G.; Cao, G. F.; He, Y. X.; Yang, J. H.; Kim, T.; Peng, X. J.; Kim, J.
S. Macro‐/micro‐environment‐sensitive chemosensing and biological
imaging. Chem. Soc. Rev. 2014, 43, 4563–4601.
H2S and Its application in studying their cross‐talk influence in mito‐
chondria. Anal. Chem. 2018, 90, 9418–9425.
[24] Zhang, Y. Y.; Li, Z.; Hu, W.; Liu, Z. H. A mitochondrial‐targeting
near‐infrared fluorescent probe for visualizing and monitoring vis‐
cosity in live cells and tissues. Anal. Chem. 2019, 91, 10302–10309.
[25] Sun, C.; Cao, W. F.; Zhang, W.; Zhang, L. L.; Feng, Y.; Fang, M.; Xu, G.
Y.; Shao, Z. L.; Yang, X. L.; Meng, X. M. Design of a ratiometric
two‐photon fluorescent probe for dual‐response of mitochondrial
SO2 derivatives and viscosity in cells and in vivo. Dyes. Pigm. 2019,
171, 107709.
[11] Wen, Y.; Liu, K.; Yang, H.; Liu, Y.; Chen, L.; Liu, Z.; Yi, T. Mitochon‐
dria‐directed fluorescent probe for the detection of hydrogen per‐
oxide near mitochondrial DNA. Anal. Chem. 2015, 87, 10579–10584.
[12] Roopa, N.; Kumar, V.; Bhalla, M.; Kumar. Development and sensing
applications of fluorescent motifs within the mitochondrial environ‐
ment. Chem. Commun. 2015, 51, 15614–15628.
[13] Zhu, H.; Fan, J.; Du, J.; Peng, X. Fluorescent probes for sensing and
imaging within specific cellular organelles. Acc. Chem. Res. 2016, 49,
2115–2126.
[14] Lee, S. C.; Heo, J.; Ryu, J. W.; Lee, C. L.; Kim, S.; Tae, J. S.; Rhee, B. O.;
Kim, S. W.; Kwon, O. P. Pyrrolic molecular rotors acting as viscosity
sensors with high fluorescence contrast. Chem. Commun. 2016, 52,
13695–13698.
[15] Baek, Y.; Park, S. J.; Zhou, X.; Kim, G.; Kim, H. M.; Yoon, J. A viscosity
sensitive fluorescent dye for real‐time monitoring of mitochondria
transport in neurons. Biosens. Bioelectron. 2016, 86, 885–891.
[16] Li, H.; Yao, Q.; Fan, J.; Du, J.; Wang, J.; Peng, X. A two‐photon
NIR‐to‐NIR fluorescent probe for imaging hydrogen peroxide in living
cells. Biosens. Bioelectron. 2017, 94, 536–543.
[26] Zou, Z.; Yan, Q.; Ai, S. X.; Qi, P.; Yang, H.; Zhang, Y. F.; Qing, Z. F.;
Zhang, L. H.; Feng, F.; Yang, R. H. Real‐time visualizing mitophagy‐
specific viscosity dynamic by mitochondria‐anchored molecular rotor.
Anal. Chem. 2019, 91, 8574–8581.
[27] Yang, X. Z.; Xu, B.; Shen, L.; Sun, R.; Xu, Y. J.; Song, Y. L.; Ge, J. F. Se‐
ries of mitochondria/lysosomes self‐targetable near‐infrared Hemi‐
cyanine Dyes for viscosity detection. Anal. Chem. 2020, 92, 3517–
3521.
[28] Li, S. J.; Wang, P. P.; Feng, W. Q.; Xiang, Y. H.; Dou, K.; Liu, Z. H. Sim‐
ultaneous imaging of mitochondrial viscosity and hydrogen peroxide
in Alzheimer’s disease by a single near‐infrared fluorescent probe
with a large Stokes shift. Chem. Commun. 2020, 56, 1050–1053.
[29] Ma, C. G.; Sun, W.; Xu, L. M.; Qian, Y.; Dai, J. N.; Zhong, G. Y.; Hou, Y.
D.; Liu, J. L.; Shen, B. X. A minireview of viscosity‐sensitive fluores‐
cent probes: design and biological applications. J. Mater. Chem. B
2020, 8, 9642–9651.
[30] Kolanowski, J. L.; Liu, F.; New, E. J. Fluorescent probes for the simul‐
taneous detection of multiple analytes in biology. Chem. Soc. Rev.
2018, 47, 195–208.
[17] Wen, Y.; Huo, F. J.; Yin, C. X. Organelle targetable fluorescent probes
for hydrogen peroxide. Chin. Chem. Lett. 2019, 30, 1834–1842.
[18] Xu, L. F.; Sun, L. H.; Zeng, F.; Wu, S. Z. Near‐infrared fluorescent na‐
noprobe for detecting hydrogen peroxide in inflammation and is‐
chemic kidney injury. Chin. J. Chem. 2020, 38, 1304–1310.
[19] Jiang, N.; Fan, J. L.; Zhang, S.; Wu, T.; Wang, J. Y.; Gao, P.; Qu, J.; Zhou,
F.; Peng, X. J. Dual mode monitoring probe for mitochondrial viscosi‐
ty in single cell. Sens. Actuat. B‐Chem. 2014, 190, 685–693.
[20] Ren, M. G.; Deng, B. B.; Zhou, K.; Kong, X. Q.; Wang, J. Y.; Lin, W. Y.
Single Fluorescent Probe for Dual‐imaging viscosity and H2O2 in mi‐
tochondria with different fluorescence signals in living cells. Anal.
Chem. 2017, 89, 552–555.
[31] Li, H.; Xin, C. Q.; Zhang, G. B.; Han, X. S.; Qin, W. J.; Zhang, C. W.; Yu,
C. M.; Jing, S.; Li, L.; Huang, W. A mitochondria‐targeted two‐photon
fluorogenic probe for the dual‐imaging of viscosity and H2O2 levels in
Parkinson’s disease models. J. Mater. Chem. B 2019, 7, 4243–4251.
[32] Dröge, W. Free radicals in the physiological control of cell function.
Physiol. Rev. 2002, 82, 47–95.
[33] Fan, L.; Wang, X. D.; Ge, J. Y.; Li, F.; Zhang, C. H.; Lin, B.; Shuang, S. M.;
Dong, C. A Golgi‐targeted off–on fluorescent probe for real‐time
monitoring of pH changes in vivo. Chem. Commun. 2019, 55, 6685–
6688.
[34] Yin, J. L.; Peng, M.; Lin, W. Y. Visualization of mitochondrial viscosity
in inflammation, fatty liver, and cancer living mice by a robust fluo‐
rescent probe. Anal. Chem. 2019, 91, 8415–8421.
[21] Lee, S. C.; Heo, J.; Woo, H. C.; Lee, J. A.; Seo, Y. H.; Lee, C. L.; Kim, S.;
Kwon, O. P. Fluorescent molecular rotors for viscosity sensors. Chem.
Eur. J. 2018, 24, 13706–13718.
[22] Sánchez, A. J.; Lei, E. K.; Kelley, S. O. A multifunctional chemical
probe for the measurement of local micropolarity and microviscosity
in mitochondria. Angew. Chem. Int. Ed. 2018, 57, 8891–8895.
[23] Li, S. J.; Li, Y. F.; Liu, H. W.; Zhou, D. Y.; Jiang, W. L.; Yang, J. O.; Li, C. Y.
A Dual‐response fluorescent probe for the detection of viscosity and
Manuscript received: December 29, 2020
Manuscript revised: February 9, 2021
Manuscript accepted: March 4, 2021
Chin. J. Chem. 2021, 39, 1303-1309
© 2021 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
1309