G. Keglevich et al. / Tetrahedron Letters 54 (2013) 466–469
469
sealed under nitrogen. The pressure developed was in the range of 6–7 bar).
The excess thiol was removed under reduced pressure, and the residue so
obtained purified by flash column chromatography using silica gel and 3%
MeOH in CHCl3 as the eluant to afford phosphinate 14a, 14b, or 15 as oils. All
operations with thiophosphinates were carried out under nitrogen.
A
B
MW
MW
Me
Me
170 °C/~15 bar
tBuOH
180 °C/6 bar
BnOH
12
7. Compound 14a: Yield: 38%; 31P NMR (121.5 MHz, CDCl3) d 75.2; 13C NMR
(75.5 MHz, CDCl3) d 12.8 (CH2CH3), 19.6 (3J = 11.8, C3–CH3), 21.0 (CH2CH3), 27.6
(CH2), 32.6 (SCH2), 36.7 (1J = 66.0, C2), 39.4 (1J = 69.1, C5), 119.5 (2J = 9.5, C4),
135.5 (2J = 15.1, C3); 1H NMR (300 MHz, CDCl3) d 0.88 (t, J = 7.3, 3H, CH2CH3),
1.31–1.47 (m, 2H, CH2CH3), 1.60–1.72 (m, 2H, CH2), 1.76 (s, 3H, C3–CH3), 2.45–
2.83 (m, 4H, PCH2), 2.83–2.96 (m, 2H, SCH2), 5.48 (d, J = 35.4, 1H, CH);
[M+H]+found = 205.0821, C9H18OPS requires 205.0816.
P
P
O
OBn
22 (55%)
O
OtBu
23 (0%)
Scheme 5. MW-assisted direct esterification of 1-hydroxy-3-phospholene 1-oxide
(12) with benzyl alcohol and tert-butanol.
8. Compound 14b: Yield: 40%; 31P NMR (121.5 MHz, CDCl3) d 74.5; 13C NMR
(75.5 MHz, CDCl3) d 13.2 (CH2CH3), 19.6 (3J = 12.0, C3–CH3), 21.4 (CH2CH3), 27.9
(CH2), 30.1 (SCH2CH2), 30.2 (2J = 3.5, SCH2), 36.7 (1J = 65.9, C2), 39.4 (1J = 69.1,
C5), 119.5 (2J = 9.7, C4), 135.5 (2J = 15.2, C3); 1H NMR (300 MHz, CDCl3) d 0.90
(t, J = 7.0, 3H, CH2CH3), 1.25–1.47 (m, 4H, 2 ꢁCH2), 1.64–1.77 (m, 2H, SCH2CH2),
1.82 (s, 3H, C3–CH3), 2.50–2.88 (m, 4H, PCH2), 2.88–3.02 (m, 2H, SCH2), 5.53 (d,
J = 36.0, 1H, CH); [M+H]+found = 219.0977, C10H20OPS requires 219.0973.
9. Compound 15: Yield: 36%; 31P NMR (121.5 MHz, CDCl3) d 67.5; 13C NMR
(75.5 MHz, CDCl3) d 13.7 (CH2CH3), 16.2 (3J = 12.0, C3–CH3), 21.9 (CH2CH3), 28.4
(3J = 2.6, SCH2CH2), 30.6 (CH2), 30.8 (2J = 3.9, SCH2), 42.2 (1J = 68.1, C2), 127.1
(2J = 11.2, C3); 1H NMR (300 MHz, CDCl3) d 0.82 (t, J = 7.0, 3H, CH2CH3), 1.17–
1.40 (m, 4H, 2ꢁCH2), 1.59–1.73 (m, total intensity 8H, 2ꢁC3–CH3, CH2), 2.48–
2.64 (m, 2H, SCH2), 2.66–2.94 (m, 4H, PCH2); [M+H]+found = 233.1130,
as the reactant, the expected benzyl phosphinate 2212 was formed
(Scheme 5A). At the same time, there was no reaction with tert-
butanol (Scheme 5B).
The fact that the benzyl phosphinate 22 was formed is of prin-
cipal importance in excluding the mechanism via olefin formation.
The lack of the formation of the tert-butyl phosphinate 23 at a reac-
tion temperature of 170°C confirms the lack of 2-methylprop-1-
ene formation under such conditions, and at the same time shows
that the phosphinylation cannot take place due to steric hindrance.
In conclusion, the MW-assisted direct esterification was ex-
tended to the synthesis of new cyclic monothiophosphinates. For-
mation of these products proved the phosphinylation mechanism
and that the incomplete conversions could be explained by the cal-
culated energetics.
C
11H22OPS requires 233.1129.
}
10. Keglevich, G.; Kovács, A.; Toke, L.; Újszászy, K.; Argay, G.; Czugler, M.; Kálmán,
A. Heteroat. Chem. 1993, 4, 329.
11. All computations were carried out using the GAUSSIAN 03 program package
(G03). The transition states were calculated by the semi-empirical PM6
method13 The structures were used as initial structures in the density
functional calculations at the B3LYP/6-31++G(d,p) level in the gas phase.14
12. Compound 22: Yield: 55%; 31P NMR (121.5 MHz, CDCl3) d 76.3; 13C NMR
(75.5 MHz, CDCl3) d 20.6 (3J = 13.0, C3–CH3), 30.9 (1J = 87.6, C2), 33.5 (1J = 91.6,
C5), 66.2 (2J = 6.4, OCH2), 120.2 (2J = 11.0, C4), 127.8 (C20), 128.3 (C40), 128.5
(C30), 136.1 (2J = 17.0, C3), 136.2 (3J = 5.5, C10); 1H NMR (300 MHz, CDCl3) d 1.75
(s, 3H, C3–CH3), 2.22–2.53 (m, 4H, PCH2), 5.08 (d, J = 8.8, 2H, OCH2), 5.49 (d,
J = 37.1, 1H, CH), 7.29–7.40 (m, 5H, C6H5); [M+H]+found = 223.0883, C12H16O2P
requires 223.0888.
Acknowledgements
This project was supported by the Hungarian Scientific and Re-
search Fund (OTKA K83118). G.K. is indebted to Professor Harry R.
Hudson (London Metropolitan University) for his advice.
13. Stewart, J. J. P. J. Mol. Mod. 2007, 13, 1173.
14. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision E.01, GAUSSIAN, Inc., Wallingford CT, 2004.
References and notes
1. Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley: New York, 2000.
2. Kiss, N. Z.; Ludányi, K.; Drahos, L.; Keglevich, G. Synth. Commun. 2009, 39, 2392.
3. Keglevich, G.; Bálint, E.; Kiss, N. Z.; Jablonkai, E.; Hegedus, L.; Grün, A.; Greiner,
}
I. Curr. Org. Chem. 2011, 15, 1802.
ˇ
4. Kranjc, K.; Kocevar, M. Curr. Org. Chem. 2010, 14, 1050.
5. Keglevich, G.; Kiss, N. Z.; Mucsi, Z.; Körtvélyesi, T. Org. Biomol. Chem. 2012, 10,
2011.
6. General procedure for the direct thioesterification of 1-hydroxy-3-methyl-3-
phospholene 1-oxide (12) under MW irradiation.
A mixture of 0.76 mmol of the phosphinic acid (0.1 g of 12, 0.11 g of 13) and
11.4 mmol of the thiol (1.2 mL of 1-butanethiol or 1.4 mL of 1-pentanethiol) in
a sealed tube was irradiated in a 300 W CEM Discover focused MW reactor
equipped with a pressure controller at 200°C for 6 h. (The reaction vessel was