the crude product was subjected to chromatography on a
n > 4, an accurate standard deviation could not be properly
determined because the concentration of the intramolecular
CD–Cn complex is no more negligible than the concentration
of the CD–Adac complex.
R
Bio-Rexꢀ 70 ion-exchange column and eluted with a water
to 0.1 M aqueous NaCl gradient. The appropriate fractions
were partially evaporated and then desalted on a Sephadex
G-25 column with water as an eluent. The CD-containing
aliquots were then lyophilisized to give the expected N-alkyl-
N,N-dimethylammonium-b-CD as a white powder in an average
yield of 40%. The purity of each compound was checked by
NMR, ES-MS and elemental analysis.
Acknowledgements
We thank the Ministe`re de l’Education Nationale, de
l’Enseignement Supe´rieur et de la Recherche for financial sup-
port (C. Binkowski), and Prof. J.-M. Aubry for the tensiometry
facilities.
Selected spectral data for mono-6-(N,N-dimethylethylamino)-b-
cyclodextrin hydrochloride (DMA–C2–CD)
1H NMR (300 MHz, D2O) d 5.41 (d, 1H, H-1 ammonium–
glucose), 5.14–5.02 (m, 6H, H-1 b-CD), 4.49 (t, 1H, H-5
ammonium–glucose), 4.09–3.48 (m, 43H, H-2, H-3, H-4, H-
5, H-6, H-6ꢀ b-CD, H-2, H-3, H-4, H-6, H-6ꢀ ammonium–
glucose and CH2a), 3.16 (s, 6H, N+(CH3)2), 1.41 (t, 3H,
CH3b). 13C NMR (75 MHz, D2O) d 102.49–101.94 (C-1 b-
CD), 100.74 (C-1 ammonium–glucose), 83.41–81.17 (C-4 b-
CD), 79.64 (C-4 ammonium–glucose), 73.57–72.02 (C-2, C-
3, C-5 b-CD and C-2, C-3 ammonium–glucose), 67.20 (C-5
ammonium–glucose), 62.17 (CH2a), 61.19–60.53 (C-6), 51.52
(N+(CH3)2), 8.01 (CH3b). ES-MS (M–Cl)+ m/z calc 1190.4,
found 1190.5. C46H80O34NCl, 3H2O %N = 1.09; %C = 43.14;
%H = 6.77; found %N = 1.05; %C = 43.43; %H = 6.66.
References
1 (a) J. Szejtli, Inclusion of Guest Molecules, Selectivity and Molecular
Recognition by Cyclodextrins, in Comprehensive Supramolecular
Chemistry, ed. J. L. Atwood, J. E. D. Davies, D. D. MacNicol,
F. Vo¨gtle, J.-M. Lehn, Pergamon, Oxford, 1996, vol. 3, p 189.
2 (a) K. Uekama, F. Hirayama and T. Irie, Chem. Rev., 1998, 98,
2045; (b) D. Ducheˆne, D. Wouessidjewe and G. Ponchel, J. Controlled
Release, 1999, 62, 263.
3 (a) F. Sallas, K. Niikura and S.-I. Nishimura, Chem. Commun., 2004,
596; (b) R. Auze´ly-Velty, F. Djeda¨ıni-Pilard, S. De´sert, B. Perly and T.
Zemb, Langmuir, 2000, 16, 3727; (c) S. Moutard, B. Perly, P. Gode´,
G. Demailly and F. Djeda¨ıni-Pilard, J. Inclusion Phenom., 2002, 44,
317; (d) I. Javierre, M. Nedyalkov, V. Petkova, J.-J. Benattar, S. Weisse,
R. Auze´ly-Velty, F. Djeda¨ıni-Pilard and B. Perly, J. Colloid Interface
Sci., 2002, 254, 120; (e) M. Eddaoudi, A. Baszkin, H. Parrot-Lopez,
M. Boissonade and A. W. Coleman, Langmuir, 1995, 11, 13; (f) C. E.
Granger, C. P. Fe´lix, H. Parrot-Lopez and B. R. Langlois, Tetrahedron
Lett., 2000, 41, 9257; A. Dubes, D. Bouchu, R. Lamartine and H.
Parrot-Lopez, Tetrahedron Lett., 2001, 42, 9147; (g) C. C. Ling, R.
Darcy and W. Risse, J. Chem. Soc., Chem. Commun., 1993, 438; K.
Chmurski, A. W. Coleman and J. J. Jurczak, Carbohydr. Chem., 1996,
15, 787; (h) Y. Kawabata, M. Matsumoto, M. Tanaka, H. Takahashi,
Y. Irinatsu, S. Tamura, W. Tagaki, H. Nakahara and K. Fukuda,
Chem. Lett., 1986, 1933; (i) A. Mazzaglia, R. Donohue, B. J. Ravoo
and R. Darcy, Eur. J. Org. Chem., 2001, 1715; (j) T. Sukegawa, T.
Furuike, K. Niikura, A. Yamagishi, K. Monde and S. I. Nishimura,
Chem. Commun., 2002, 430; (k) M. J. Pregel, L. Jullien and J.-M.
Lehn, Angew. Chem., Int. Ed., 1992, 31, 1637.
4 (a) K. Romøren, B. J. Thu, N. C. Bols and Ø Evensen, Biochim.
Biophys. Acta, 2004, 1663, 127; (b) R. Donohue, A. Mazzaglia, B. J.
Ravoo, B. J. Darcy and R. Darcy, Chem. Commun., 2002, 2864;
(c) S. A. Cryan, A. Holohan, R. Donohue, R. Darcy and C. M.
O’Driscoll, Eur. J. Pharm. Sci., 2004, 21, 625.
5 R. C. Petter and J. S. Salek, J. Am. Chem. Soc., 1987, 109, 7897.
6 R. P. Bonomo, V. Cucinotta, F. D’Alessandro, G. Impellizzeri, G.
Maccarrone, G. Vecchio and E. Rizzarelli, Inorg. Chem., 1991, 30,
2708.
Selected spectral data for mono-6-(N,N-dimethylbutylamino)-b-
cyclodextrin hydrochloride (DMA–C4–CD)
1H NMR (300 MHz, D2O) d 5.41 (d, 1H, H-1 ammonium–
glucose), 5.25–5.07 (m, 6H, H-1 b-CD), 4,39 (t, 1H, H-5
ammonium–glucose), 4.02–3.54 (m, 43H, H-2, H-3, H-4, H-5,
H-6, H-6ꢀ b-CD, H-2, H-3, H-4, H-6, H-6ꢀ ammonium–glucose
and CH2a), 3.25 (s, 3H, CH3–N+), 3.17 (s, 3H, CH3b–N+),
1.87–1.65 (m, 2H, CH2b), 1.44–1.39 (m, 2H, CH2c ), 1.01 (t,
3H, CH3d). 13C NMR (75 MHz, D2O) d 102.40–101.90 (C-
1 b-CD), 100.20 (C-1 ammonium–glucose), 82.97–81.05 (C-4
b-CD), 79.18 (C-4 ammonium–glucose), 73.68–71.69 (C-2, C-
3, C-5 b-CD and C-2, C-3 ammonium–glucose), 67.14 (C-5
ammonium–glucose), 63.66 (Ca), 61.54–60.13 (C-6), 54.18 and
53.25 (N+(CH3)2), 24.73 (CH2b), 19.55 (CH2c ), 13.43 (CH3).
ES-MS (M–Cl)+ m/z calc 1218.5, found 1218.9. C48H84O34NCl,
2H2O %N = 1.09; %C = 44.67; %H = 6.87; found %N = 1.06;
%C = 44.69; %H = 7.06.
Compounds DMA–C6–CD, DMA–C8–CD, DMA–C10–CD,
DMA–C12–CD, DMA–C14–CD and DMA–C16–CD gave sim-
ilar NMR data to that of DMA–C4–CD except for the signal
at 1.50–1.00 ppm on the 1H NMR spectrum whose integration
depended on the number of methylene groups on the alkyl chain.
7 (a) N. Bellanger and N. B. Perly, J. Mol. Struct., 1992, 273, 215; (b) J.
Lin, C. Creminon, B. Perly and F. Djeda¨ıni-Pilard, J. Chem. Soc.,
Perkin Trans. 2, 1998, 2639.
8 (a) H.-J. Schneider, F. Hacket, V. Ru¨diger and H. Ikeda, Chem. Rev.,
1998, 98, 1755; (b) S. Simova and H. J. Schneider, J. Chem. Soc,
Perkin Trans. 2, 2000, 1717; (c) T. L. Hwang and A. J. Shaka, J. Am.
Chem. Soc, 1992, 114, 3157.
9 (a) M. Miyauchi and A. Harada, J. Am. Chem. Soc, 2004, 126, 11418;
(b) Y. Liu, Z. Fan, H.-Y. Zhang and C.-H. Diao, Org. Lett., 2003, 5,
251.
Calculation of association constants by 1H NMR spectroscopy
The Hb proton of Adac was chosen for evaluating the apparent
association constant. Assuming a 1 : 1 inclusion mechanism, the
observed chemical shift of the Hb proton (dOBS) and the complex
concentration [COMP] are described as follows:
10 Y. Sueishi, M. Kasahara, M. Inoue and K. Matsueda, J. Inclusion
Phenom., 2003, 46, 71.
11 L. Fielding, Tetrahedron, 2000, 56, 6151.
12 (a) W. Cromwell, K. Bystrom and M. Eftink, J. Phys. Chem., 1985,
89, 326; (b) M. V. Rekharsky and Y. Inoue, Chem. Rev., 1998, 95,
1875; (c) M. R. Eftink, M. L. Andy, K. Bystrom, H. D. Perlmutter
and D. S. Kristol, J. Am. Chem. Soc., 1989, 111, 6765; (d) P. M.
Ivanov, D. Salvatierra and C. Jaime, J. Org. Chem., 1996, 61, 7012.
13 (a) P. Job, Ann. Chim., 1928, 9, 113; (b) V. Gil and N. Oliveira, J. Chem.
Educ., 1990, 67, 473.
14 D. Landy, S. Fourmentin, M. Salome and G. Surpateanou, J. Inclu-
sion Phenom., 2000, 38, 187.
15 M. J. Rosen, Surfactants and Interfacial Phenomena, John Wiley &
Sons, New York, 2nd edn., 1989, p. 108.
(1)
where K and [ ]tot stand for the association constant and total
concentration, respectively.14 For a given value of K, [COMP]
is known and dCOMP may be calculated from eqn. (1) for each
[CD]tot. Standard deviation over dCOMP is minimized relative to K
to obtain the 1 : 1 association constant. For DMA–Cn–CD with
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 1 1 2 9 – 1 1 3 3
1 1 3 3