to understand further the role of the nitro substituent in
facilitating Pd(0)-catalyzed reactions. Pd(PH3)2 was used as
a smaller surrogate of the Pd(PPh3)2 catalyst (Scheme 1).
Table 1. Computed Activation Energy Barriers (Eact) in Gas
Phase (ꢀ ) 1) and (Eact(DMF)) in DMF (ꢀ ) 37.2)
Scheme 1
Gas phase ground state and transition structure geometry
optimizations6 were computed using hybrid density functional
theory B3LYP.7 The 6-31G(d)8 basis set was used for P, N,
O, C, and H and the LANL2DZ9 effective core potential
and its associated basis set was used for the halogens (I, Br,
Cl, F) and Pd as implemented in Gaussian 98.10 The
computed activation energies (Table 1) for the addition of
Pd(PH3)2 to unsubstituted aryl halides (1a-4a) agree with
the known experimental reactivity of these substrates toward
Pd-catalyzed oxidative addition.11 With the introduction of
the o-nitro substituent (1b-4b), the activation energy barriers
of the aryl halides decrease as shown in Table 1.12
The most dramatic change is observed for 1-fluoro-2-
nitrobenzene (4b). The activation energy barrier decreases
(5) It has been proposed that Pd(PPh3)4 dissociates and has two ligands
catalyzing the oxidative addition step as discussed by: (a) Fauvarque, J.
F.; Pfluger, F.; Troupel, M. J. Organomet. Chem. 1979, 208, 419-427. (b)
Amatore, C.; Pfluger, F. Organometallics 1990, 9, 2276-2282.
(6) All stationary points were characterized using frequency calculations
(reported energies include zero point energy corrections and were scaled
by 0.9806. Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502-
16513). Single point solvation energy calculations for reactants and transition
structures were computed using the polarizable continuum solvation model
PCM [(a) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239-245. (b)
Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117-129], as
implemented in Gaussian 98, with a permittivity of 37.2, the value for DMF.
Gas-phase energies in Table 1 are reported as zero point energy corrected
electronic energies. The energies computed for structures in solvent include
electronic energy plus the solvation energy as reported from PCM.
(7) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. ReV. B 1988, 37, 785-789.
to 23.3 kcal/mol when compared to the activation energy
for fluorobenzene (4a), which is calculated to be 37.7 kcal/
mol.13 However, the computed activation energy barrier for
the addition of Pd(0) to 1-fluoro-4-nitrobenzene (4c) is only
slightly lower (32.5 kcal/mol) than that for fluorobenzene.
Similarly, 2-fluorobenzonitrile (5) is predicted to have an
activation energy barrier close to that of 1-fluoro-4-nitroben-
zene. A close examination of the transition structure geom-
etry of TS-4b reveals the presence of a very short Pd-O
(NO2) distance as shown in Figure 1.
(8) (a) Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971,
54, 724-728. (b) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys.
1972, 56, 2257-2261. (c) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta
1973, 28, 213-222.
(9) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.11; Gaussian,
Inc.: Pittsburgh, PA, 1998.
(11) (a) Hegedus, L. S. In Organometallics in Synthesis: A Manual;
2nd ed.; Schlosser, M., Ed.; Wiley: New York, 2002; pp 1123-1217. (b)
Tsuji, J. In Palladium Reagents and Catalysts; Wiley: New York, 1995.
(12) (a) The activation energy barriers computed with B3LYP/6-
311+G** basis set for P, N, O, C, H and LANL2DZ effective core potential
and its associated basis set for Pd and the halogens (single point energy
calculations on fully optimized geometries of structures reported in Table
1) reflect the same general trend as those in Table 1. (b) The use of the
The coordination of the nitro group oxygen of 1-fluoro-
2-nitrobenzene to the Pd metal may be the source of
transition state stabilization.14 In the transition state, the nitro
LANL2DZ basis set for fluorine was successful in reproducing geometries
in crystal structures reported in Chu, Q.; Wang, Z.; Huang, Q.; Yan, C.;
Zhu, S. J. Am. Chem. Soc. 2001, 123, 11069-11070. The comparisons of
the calculated and experimental information are provided in Supporting
Information.
(13) IRC calculations on transition states 4a and 4b lead to intermediates
with distorted square planar geometries, supporting a concerted oxidative
addition mechanism in the gas phase at this level of theory. Geometries of
these intermediates are provided in Supporting Information.
(14) Widdowson et al. made a similar observation as discussed in ref
3a-d.
1012
Org. Lett., Vol. 7, No. 6, 2005