Page 17 of 19
Dalton Transactions
DOI: 10.1039/D0DT00433B
24.
Saravanamurugan, S.; Palanichamy, M.; Hartmann, M.; Murugesan, V., Knoevenagel
condensation over β and Y zeolites in liquid phase under solvent free conditions. Applied Catalysis A:
General 2006, 298, 8-15.
25.
Yang, Y.; Yao, H.-F.; Xi, F.-G.; Gao, E.-Q., Amino-functionalized Zr (IV) metal–organic
framework as bifunctional acid–base catalyst for Knoevenagel condensation. Journal of Molecular
Catalysis A: Chemical 2014, 390, 198-205.
26.
Rodriguez, I.; Sastre, G.; Corma, A.; Iborra, S., Catalytic activity of proton sponge:
Application to Knoevenagel condensation reactions. Journal of Catalysis 1999, 183 (1), 14-23.
27. Zhu, A.; Liu, R.; Li, L.; Li, L.; Wang, L.; Wang, J., Dual functions of N, N-
dimethylethanolamnium-based ionic liquids for the Knoevenagel reactions at room temperature.
Catalysis today 2013, 200, 17-23.
28.
Luan, Y.; Qi, Y.; Gao, H.; Andriamitantsoa, R. S.; Zheng, N.; Wang, G., A general post-
synthetic modification approach of amino-tagged metal–organic frameworks to access efficient
catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A 2015, 3 (33),
17320-17331.
29.
Liu, L.; Corma, A., Metal catalysts for heterogeneous catalysis: from single atoms to
nanoclusters and nanoparticles. Chemical reviews 2018, 118 (10), 4981-5079.
30. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal–organic
framework materials as catalysts. Chemical Society Reviews 2009, 38 (5), 1450-1459.
31. Vermoortele, F.; Bueken, B.; Le Bars, G. l.; Van de Voorde, B.; Vandichel, M.; Houthoofd,
K.; Vimont, A.; Daturi, M.; Waroquier, M.; Van Speybroeck, V., Synthesis modulation as a tool to
increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66 (Zr). Journal
of the American Chemical Society 2013, 135 (31), 11465-11468.
32.
Pérez-Mayoral, E.; Musilová, Z.; Gil, B.; Marszalek, B.; Položij, M.; Nachtigall, P.; Čejka, J.,
Synthesis of quinolines via Friedländer reaction catalyzed by CuBTC metal–organic-framework.
Dalton Transactions 2012, 41 (14), 4036-4044.
33.
Tonigold, M.; Lu, Y.; Bredenkötter, B.; Rieger, B.; Bahnmüller, S.; Hitzbleck, J.; Langstein,
G.; Volkmer, D., Heterogeneous Catalytic Oxidation by MFU‐1: A Cobalt (II)‐Containing Metal–
Organic Framework. Angewandte Chemie International Edition 2009, 48 (41), 7546-7550.
34.
Dhakshinamoorthy, A.; Garcia, H., Metal–organic frameworks as solid catalysts for the
synthesis of nitrogen-containing heterocycles. Chemical Society Reviews 2014, 43 (16), 5750-5765.
35. Corma, A.; García, H.; Llabrés i Xamena, F., Engineering metal organic frameworks for
heterogeneous catalysis. Chemical reviews 2010, 110 (8), 4606-4655.
36. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral metal–organic frameworks for asymmetric
heterogeneous catalysis. Chemical reviews 2011, 112 (2), 1196-1231.
37. Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.-Y., Applications of metal–organic
frameworks in heterogeneous supramolecular catalysis. Chemical Society Reviews 2014, 43 (16),
6011-6061.
38.
Gao, M.-L.; Qi, M.-H.; Liu, L.; Han, Z.-B., An exceptionally stable core–shell MOF/COF
bifunctional catalyst for a highly efficient cascade deacetalization–Knoevenagel condensation
reaction. Chemical Communications 2019, 55 (45), 6377-6380.
39.
Su, F.; Antonietti, M.; Wang, X., mpg-C 3 N 4 as a solid base catalyst for Knoevenagel
condensations and transesterification reactions. Catalysis Science & Technology 2012, 2 (5), 1005-
1009.
40.
Burgoyne, A. R.; Meijboom, R., Knoevenagel condensation reactions catalysed by metal-
organic frameworks. Catalysis letters 2013, 143 (6), 563-571.
17