Journal of the American Chemical Society
Communication
the ability to react with 5MedC and dC; however, some cleavage
bands were relatively weaker when compared with 2.
Furthermore, the same results were obtained when the
ODNs were treated with either CH PhSO −NBrNa or p-
Bourget, J. A.; Stewart, R.; Ruotti, V.; Millar, A. H.; Thomson, J. A.;
Ren, B.; Ecker, J. R. Nature 2009, 462, 315.
(
(
(
(
2) Bird, A. Genes Dev. 2002, 16, 6.
3) Counts, J. L.; Goodman, J. I. Cell 1995, 83, 13.
4) Beck, S.; Rakyan, V. K. Cell 2008, 24, 231.
5) Keshet, I.; Schlesinger, Y.; Farkash, S.; Rand, E.; Hecht, M.; Segal,
3
2
NO PhSO −NBrNa (Figure S5). In general, the results
2
2
obtained above demonstrate that all of the bromamine-T
derivatives basically have the ability to produce piperidine-
E.; Pikarski, E.; Young, R. A.; Niveleau, A.; Cedar, H.; Simon, I. Nat.
Genet. 2006, 38, 149.
5
Me
sensitive cleavage sites at dC and
dC residues upon
(6) (a) Issa, J. P.; Ottaviano, Y. L.; Celano, P.; Hamilton, S. R.;
treatment under the optimum conditions. However, because
of the weaker cleavage bands at some sites when these other
derivatives were used, we chose the relatively better one,
compound 2.
Davidson, N. E.; Baylin, S. B. Nat. Genet. 1994, 7, 536. (b) Xiong, Z.
G.; Laird, P. W. Nucleic Acids Res. 1997, 25, 2532.
(7) Herman, J. G.; Graff, J. R.; Myohanen, S.; Nelkin, B. D.; Baylin, S.
B. Proc. Natl. Acid. Sci. U.S.A. 1996, 93, 9821.
(
8) Tanabe, K.; Yamada, H.; Nishimoto, S. J. Am. Chem. Soc. 2007,
29, 8034.
9) (a) Ami, T.; Ogino, M.; Taya, Y.; Takemura, Y.; Fijimoto, K.
Meanwhile, the influences of the pH and reaction temper-
ature were also tested. The results show that the pH has little
influence on the reaction with 1 but greatly influences the result
of the reaction with 2 because of the hydrolytic process. In
addition, the reaction temperature impacts both reactions.
Lower temperature may lead to lower yields, while higher
temperature can decrease the selectivity, producing unwanted
cleavage bands at the sites of dT (Figures S6 and S7). Besides,
the acetonitrile solvent was added to the solution to increase
1
(
Nucleic Acids Symp. Ser. 2009, 53, 203. (b) Ogino, M.; Taya, Y.;
Fujimoto, K. Org. Biomol. Chem. 2009, 7, 3163.
(10) Maxam, A. M.; Gilbert, W. Proc. Natl. Acad. Sci. U.S.A. 1977, 74,
5
60.
(11) Okamoto, A.; Tainaka, K.; Kamei, T. Org. Biomol. Chem. 2006,
4, 1638.
(12) Tanaka, K.; Tainaka, K.; Kamei, T.; Okamoto, A. J. Am. Chem.
Soc. 2007, 129, 5612.
19
the nucleophilicity of the reaction.
(13) Bareyt, S.; Carell, T. Angew. Chem., Int. Ed. 2008, 47, 181.
In summary, we have developed a novel indirect chemical
method for distinguishing between cytosine and 5mC in DNA
sequences. In addition, this method allows us to identify the
(14) Booth, M. J.; Branco, M. R.; Ficz, G.; Oxley, D.; Krueger, F.;
Reik, W.; Balasubramanian, S. B. Science 2012, 336, 934.
15) Song, C. X.; Szulwach, K. E.; Fu, Y.; Dai, Q.; Yi, C. Q.; Li, X. K.;
(
5
Me
number and loci of the
dC residues both in ssDNA and
Chen, C. H.; Zhang, W.; Jian, X.; Wang, J.; Looney, T.; Zhang, B.;
Godley, L. A.; Hicks, L. M.; Lahn, B. T.; Jin, P.; He, C. Nat. Biotechnol.
dsDNA accurately and efficiently by combining results obtained
using the two compounds examined in this study. Furthermore,
2
011, 29, 68.
5
Me
5hm
this strategy also enabled us to distinguish
dC from
dC
(16) Cokus, S. J.; Feng, S. H.; Zhang, X. Y.; Chen, Z. G.; Merriman,
B.; Haudenschild, C. D.; Pradhan, S.; Nelson, S. F.; Pellegrini, M.;
Jacobsen, S. E. Nature 2008, 452, 215.
by increasing the steric hindrance of 5hmC using β-
glucosyltransferase.
(17) Frommer, M.; Mcdonald, L. E.; Millar, D. S.; Collis, C. M.;
Watt, F.; Grigg, G. W.; Molloy, P. L.; Paul, C. L. Proc. Natl. Acad. Sci.
U.S.A. 1992, 89, 1827.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
18) Jeong, J. U.; Tao, B.; Sagasser, I.; Henniges, H.; Sharpless, K. B.
J. Am. Chem. Soc. 1998, 120, 6844.
19) Ando, T.; Kano, D.; Minakata, S.; Ryu, I.; Komatsu, M.
General methods; synthesis and characterization data; exper-
imental details of Maxam−Gilbert methods for G, A + G, and C
sequencing lanes; other PAGE analyses; ab initio calculations of
the energies of CC bonds in the pyrimidine rings; HPLC and
MALDI-TOF MS data; and detailed proposed mechanisms of
(
Tetrahedron 1998, 54, 13485.
(20) Albone, D. P.; Aujla, P. S.; Taylor, P. C. J. Org. Chem. 1998, 63,
9569.
(21) Kaelin, W. G.; Maher, E. R. Trends Genet. 1998, 14, 423.
(22) Stemmler, A. J.; Burrows, C. J. J. Biol. Inorg. Chem. 2001, 6, 100.
(23) Jin, S. G.; Kadam, S.; Pfeifer, G. P. Nucleic Acid Res. 2010, 38,
No. e125.
AUTHOR INFORMATION
(24) Pastor, W. A.; Pape, U. J.; Huang, Y.; Henderson, H. R.; Lister,
R.; Ko, M.; McLoughlin, E. M.; Brudno, Y.; Mahapatra, S.; Kapranov,
P.; Tahiliani, M.; Daley, G. Q.; Liu, X. S.; Ecker, J. R.; Milos, P. M.;
Agarwal, S.; Rao, A. Nature 2011, 473, 394.
Author Contributions
T.W. and T.H. contributed equally.
†
(25) Itoh, N.; Izumi, Y.; Yamada, H. Biochemistry 1987, 26, 282.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
X. Zhou thanks the National Basic Research Program of China
973 Program) (2012CB720600 and 2012CB720603), the
■
(
National Natural Science Foundation of China (91213302), the
National Grand Program on Key Infectious Disease
(
2012ZX10003002-014), and the Program for Changjiang
Scholars and Innovative Research Team in University
IRT1030).
(
REFERENCES
■
(
1) Lister, R.; Pelizzola, M.; Dowen, R. H.; Hawkins, R. D.; Hon, G.;
Filippini, J. T.; Nery, J. R.; Lee, L.; Ye, Z.; Ngo, Q. M.; Edsall, L.;
1
243
dx.doi.org/10.1021/ja311229n | J. Am. Chem. Soc. 2013, 135, 1240−1243