Organometallics
Communication
(
8) Johnson, C.; Albrecht, M. Piano-Stool N-Heterocyclic Carbene
(26) Huynh, H. V. Electronic Properties of N-Heterocyclic Carbenes
and Their Experimental Determination. Chem. Rev. 2018, 118, 9457−
9492.
Iron Complexes: Synthesis, Reactivity and Catalytic Applications.
Coord. Chem. Rev. 2017, 352, 1−14.
(
Chemistry: Neglected (Brønsted) Base Ligands in Cooperative
Catalysis. Coord. Chem. Rev. 2017, 344, 299−322.
(
5
9) Igau, A. η -Oxocyclohexadienyl Ligands in Transition Metal
(27) For recent studies assessing the balance between NHC σ-
donation and π-acidity, see: (a) Back, O.; Henry-Ellinger, M.; Martin,
3
1
C. D.; Martin, D.; Bertrand, G. P NMR Chemical Shifts of
Carbene−Phosphinidene Adducts as an Indicator of the π-Accepting
Properties of Carbenes. Angew. Chem., Int. Ed. 2013, 52, 2939−2943.
(b) Liske, A.; Verlinden, K.; Buhl, H.; Schaper, K.; Ganter, C.
Determining the π-Acceptor Properties of N-Heterocyclic Carbenes
10) Engel, J.; Smit, W.; Foscato, M.; Occhipinti, G.; Tornroos, K.
̈
W.; Jensen, V. R. Loss and Reformation of Ruthenium Alkylidene:
Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration,
and Isomerization. J. Am. Chem. Soc. 2017, 139, 16609−16619.
7
7
(
11) Jafarpour, L.; Huang, J.; Stevens, E. D.; Nolan, S. P. (p-
by Measuring the Se NMR Chemical Shifts of Their Selenium
Adducts. Organometallics 2013, 32, 5269−5272. (c) Vummaleti, S. V.
C.; Nelson, D. J.; Poater, A.; Gomez-Suarez, A.; Cordes, D. B.; Slawin,
A. M. Z.; Nolan, S. P.; Cavallo, L. What Can NMR Spectroscopy of
Selenoureas and Phosphinidenes Teach Us About the π-Accepting
Abilities of N-Heterocyclic Carbenes? Chem. Sci. 2015, 6, 1895−1904.
cymene)RuLCl2 (L = 1,3-Bis(2,4,6-trimethylphenyl)imidazol-2-yli-
dene and 1,3-Bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and
Related Complexes as Ring Closing Metathesis Catalysts. Organo-
metallics 1999, 18, 3760−3763.
(
12) Lo, C.; Cariou, R.; Fischmeister, C.; Dixneuf, P. H. Simple
Ruthenium Precatalyst for the Synthesis of Stilbene Derivatives and
Ring-Closing Metathesis in the Presence of Styrene Initiators. Adv.
Synth. Catal. 2007, 349, 546−550.
(28) Furstner, A.; Ackermann, L.; Gabor, B.; Goddard, R.; Lehmann,
̈
C. W.; Mynott, R.; Stelzer, F.; Thiel, O. R. Comparative Investigation
of Ruthenium-Based Metathesis Catalysts Bearing N-Heterocyclic
Carbene (NHC) Ligands. Chem. - Eur. J. 2001, 7, 3236−3253.
(29) Kotyk, M. W.; Gorelsky, S. I.; Conrad, J. C.; Carra, C.; Fogg, D.
(
13) (a) Delaude, L.; Demonceau, A.; Noels, A. F. Visible Light
Induced Ring-Opening Metathesis Polymerisation of Cyclooctene.
Chem. Commun. 2001, 986−987. (b) Delaude, L.; Szypa, M.;
Demonceau, A.; Noels, A. F. Ru-NHC New In Situ Generated
Ruthenium Catalysts Bearing N-Heterocyclic Carbene Ligands for the
Ring-Opening Metathesis Polymerization of Cyclooctene. Adv. Synth.
Catal. 2002, 344, 749−756.
E. Geometric and Electronic Structure of a C -Symmetric Ru-
1
Aryloxide Metathesis Catalyst: An Experimental and Computational
Study. Organometallics 2009, 28, 5424−5431.
(30) Hillier, A. C.; Sommer, W. J.; Yong, B. S.; Petersen, J. L.;
Cavallo, L.; Nolan, S. P. A Combined Experimental and Theoretical
Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to
(
14) Xie, X.; Huynh, H. V. Tunable Dehydrogenative Amidation
5
versus Amination Using a Single Ruthenium-NHC Catalyst. ACS
the Cp*RuCl (Cp* = η -C Me ) Moiety: Insight into Stereo-
5
5
Catal. 2015, 5, 4143−4151.
electronic Differences Between Unsaturated and Saturated NHC
Ligands. Organometallics 2003, 22, 4322−4326.
(
15) Gandolfi, C.; Heckenroth, M.; Neels, A.; Laurenczy, G.;
Albrecht, M. Chelating NHC Ruthenium(II) Complexes as Robust
2
2
Homogeneous Hydrogenation Catalysts. Organometallics 2009, 28,
slow at room temperature involved the use of 40 equiv of CH Cl in
hexanes. See: Arduengo, A. J.; Davidson, F.; Dias, H. V. R.; Goerlich,
J. R.; Khasnis, D.; Marshall, W. J.; Prakasha, T. K. An Air Stable
Carbene and Mixed Carbene “Dimers. J. Am. Chem. Soc. 1997, 119,
12742−12749.
(32) For a report of nanoparticle formation on decomposition of
GII, see: Higman, C. S.; Lanterna, A. E.; Marin, M. L.; Scaiano, J. C.;
Fogg, D. E. Catalyst Decomposition During Olefin Metathesis Yields
Isomerization-Active Ru Nanoparticles. ChemCatChem 2016, 8,
2446−2449. Ligand activation may enable the required reduction
event in both cases.
(33) Kingsbury, J. S.; Harrity, J. P. A.; Bonitatebus, P. J.; Hoveyda, A.
H. A Recyclable Ru-Based Metathesis Catalyst. J. Am. Chem. Soc.
1999, 121, 791−799.
(34) Gessler, S.; Randl, S.; Blechert, S. Synthesis and Metathesis
Reactions of a Phosphine-Free Dihydroimidazole Carbene Ruthenium
Complex. Tetrahedron Lett. 2000, 41, 9973−9976.
5
(
112−5121.
2
2
16) Semeril, D.; Bruneau, C.; Dixneuf, P. H. Imidazolium and
Imidazolinium Salts as Carbene Precursors or Solvent for Ruthenium-
Catalysed Diene and Enyne Metathesis. Adv. Synth. Catal. 2002, 344,
5
(
85−595.
17) Castarlenas, R.; Alaoui-Abdallaoui, I.; Semeril, D.; Mernari, B.;
Guesmi, S.; Dixneuf, P. H. In-situ Generated Three Component
Ruthenium-Based Catalyst for ROMP. New J. Chem. 2003, 27, 6−8.
(
18) Delaude, L.; Delfosse, S.; Richel, A.; Demonceau, A.; Noels, A.
F. Tuning of Ruthenium N-Heterocyclic Carbene Catalysts for ATRP.
Chem. Commun. 2003, 1526−1527.
(
19) Ledoux, N.; Allaert, B.; Verpoort, F. Ruthenium-Based NHC-
Arene Systems as Ring-Opening Metathesis Polymerisation Catalysts.
Eur. J. Inorg. Chem. 2007, 2007, 5578−5583.
(
20) Of note, the p-cymene ligand can be stabilized by electron-
withdrawing ligands, as evidenced by the isolation of a bis(tri-
fluoroacetate) derivative of Ru-2 in 76% yield. See: Zhang, Y.; Wang,
D.; Lonnecke, P.; Scherzer, T.; Buchmeiser, M. R. Novel Initiators for
Thermally and UV-Triggered ROMP. Macromol. Symp. 2006, 236,
(35) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Synthesis and
Activity of a New Generation of Ruthenium-Based Olefin Metathesis
Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-
ylidene Ligands. Org. Lett. 1999, 1, 953−956.
3
(
0−37.
21) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Mechanisms of the
H -Hydrogenation and Transfer Hydrogenation of Polar Bonds
(36) (a) Schwab, P.; Grubbs, R. H.; Ziller, J. W. Synthesis and
Applications of RuCl (=CHR’)(PR ) : The Influence of the
2
Catalyzed by Ruthenium Hydride Complexes. Coord. Chem. Rev.
2
3 2
2
(
004, 248, 2201−2237.
Alkylidene Moiety on Metathesis Activity. J. Am. Chem. Soc. 1996,
analysis of the merits of the various Ru precursors used, see: Fogg, D.
E.; Foucault, H. M., Ring-Opening Metathesis Polymerization. In
Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos,
D. M. P., Eds.; Elsevier: Oxford, U.K., 2007; Vol. 11, pp 623−652.
(37) Bujok, R.; Bieniek, M.; Masnyk, M.; Michrowska, A.; Sarosiek,
A.; Stepowska, H.; Arlt, D.; Grela, K. Ortho- and Para-Substituted
Hoveyda-Grubbs Carbenes. An Improved Synthesis of Highly
Efficient Metathesis Initiators. J. Org. Chem. 2004, 69, 6894−6896.
(38) For advantages of Merrifield resins relative to other phosphine
scavengers, including the Amberlyst resin, and a discussion of the
optimal reaction sequence in synthesis of HII, see: Nascimento, D. L.;
22) Hafner, A.; Muhlebach, A.; van der Schaaf, P. A. One-
Component Catalysts for Thermal and Photoinduced Ring Opening
Metathesis Polymerization. Angew. Chem., Int. Ed. Engl. 1997, 36,
2
(
121−2124.
23) Lummiss, J. A. M.; Higman, C. S.; Fyson, D. L.; McDonald, R.;
Fogg, D. E. The Divergent Effects of Strong NHC Donation in
Catalysis. Chem. Sci. 2015, 6, 6739−6746.
(
Temperature H NMR Studies on Grubbs Catalysts. J. Organomet.
Chem. 2008, 693, 1252−1260.
(
Face Donor Properties of N-Heterocyclic Carbenes in Grubbs II
Complexes. Chem. - Eur. J. 2008, 14, 5465−5481.
24) Gallagher, M. M.; Rooney, A. D.; Rooney, J. J. Variable
1
25) Leuthaeusser, S.; Schmidts, V.; Thiele, C. M.; Plenio, H. pi-
D
Organometallics XXXX, XXX, XXX−XXX