Analytical Chemistry
Page 8 of 9
(3)
Wyld, L.; Audisio, R. A.; Poston, G. J. The Evolution of
axillary lymph node with excellent contrast upon doing so
(Figures 6C and 6D).
Cancer Surgery and Future Perspectives. Nat. Rev. Clin. Oncol. 2015,
12 (2), 115–124.
(4)
1
2
Conclusion
Vahrmeijer, A. L.; Hutteman, M.; van der Vorst, J. R.; van
3
4
5
6
7
8
9
de Velde, C. J. H.; Frangioni, J. V. Image-Guided Cancer Surgery
Using near-Infrared Fluorescence. Nat. Rev. Clin. Oncol. 2013, 10 (9),
507–518.
We described the development of the first NIR fluorescent
rosol dye (THQ-Rosol) tailored with optimal properties for
overcoming the limitations arising from those of the generic
molecular fluorescent dyes commonly-used for lymphatic
mapping applications. We utilized efficient DFT calculations to
facilitate the design of both non-NIR and NIR fluorescent rosol
dyes, wherein we leveraged the strong relationships that we
discerned between select calculated, modeled, and evaluated
properties of the former dyes to rationally design an uncharged
xanthene core-based scaffold as an integrated component of a
rosol molecular platform such that it would have a finely-tuned
NIR fluorescence emission wavelength (710 nm) and a pKa
value (5.85) that fittingly situates its off-on fluorescence
intensity-pH profile to provide optimal contrast for the deep-
tissue fluorescence imaging of tumor-draining lymphatics. In
doing so, we established a simple model to fashion a priori non-
NIR and NIR fluorescent rosol dyes with specific properties.
We demonstrated that THQ-Rosol outperforms ICG by
affording timely tumor drainage and definitive lymph node
visualization with excellent contrast due to its design. As such,
THQ-Rosol could significantly aid in the visualization of the
potential metastatic tumor-draining lymph node(s) for their pre-
and intraoperative treatment.
(5)
Chi, C.; Du, Y.; Ye, J.; Kou, D.; Qiu, J.; Wang, J.; Tian, J.;
Chen, X. Intraoperative Imaging-Guided Cancer Surgery: From
Current Fluorescence Molecular Imaging Methods to Future Multi-
Modality Imaging Technology. Theranostics 2014, 4 (11), 1072–1084.
(6)
Microscope-Integrated
Supermicrosurgery. Microsurgery 2015, 35 (5), 407–410.
(7) Currie, A. C.; Brigic, A.; Thomas-Gibson, S.; Suzuki, N.;
Ayestaray, B.; Bekara, F. Fluorescein Sodium Fluorescence
Lymphangiography for Lymphatic
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Moorghen, M.; Jenkins, J. T.; Faiz, O. D.; Kennedy, R. H. A Pilot Study
to Assess near Infrared Laparoscopy with Indocyanine Green (ICG) for
Intraoperative Sentinel Lymph Node Mapping in Early Colon Cancer.
Eur. J. Surg. Oncol. 2017, 43 (11), 2044–2051.
(8)
He, J.; Yang, L.; Yi, W.; Fan, W.; Wen, Y.; Miao, X.; Xiong,
L. Combination of Fluorescence-Guided Surgery with Photodynamic
Therapy for the Treatment of Cancer. Mol. Imaging 2017, 16, 1-15.
(9)
Nagaya, T.; Nakamura, Y. A.; Choyke, P. L.; Kobayashi, H.
Fluorescence-Guided Surgery. Front. Oncol. 2017, 7, 1-16.
(10) DSouza, A. V.; Lin, H.; Henderson, E. R.; Samkoe, K. S.;
Pogue, B. W. Review of Fluorescence Guided Surgery Systems:
Identification of Key Performance Capabilities beyond Indocyanine
Green Imaging. J. Biomed. Opt. 2016, 21 (8), 80901.
(11) Lavis, L. D. Teaching Old Dyes New Tricks: Biological
Probes Built from Fluoresceins and Rhodamines. Annu. Rev. Biochem.
2017, 86, 825–843.
(12) Howland, R. H. Methylene Blue: The Long and Winding
Road from Stain to Brain: Part 1. J. Psychosoc. Nurs. Ment. Health
Serv. 2016, 54 (9), 21–24.
(13) Schirmer, R. H.; Adler, H.; Pickhardt, M.; Mandelkow, E.
Lest We Forget You--Methylene Blue... Neurobiol. Aging 2011, 32
(12), 2325.e7-16.
(14) Mindt, S.; Karampinis, I.; John, M.; Neumaier, M.; Nowak,
K. Stability and Degradation of Indocyanine Green in Plasma, Aqueous
Solution and Whole Blood. Photochem. Photobiol. Sci. 2018, 17 (9),
1189–1196.
(15) Song, L.; Hennink, E. J.; Young, I. T.; Tanke, H. J.
Photobleaching Kinetics of Fluorescein in Quantitative Fluorescence
Microscopy. Biophys. J. 1995, 68 (6), 2588–2600.
(16) Choi, H. S.; Nasr, K.; Alyabyev, S.; Feith, D.; Lee, J. H.;
Kim, S. H.; Ashitate, Y.; Hyun, H.; Patonay, G.; Strekowski, L.; et al.
Synthesis and In Vivo Fate of Zwitterionic Near-Infrared Fluorophores.
Angew. Chem. Int. Ed. 2011, 50 (28), 6258–6263.
(17) Frangioni, J. V. In Vivo Near-Infrared Fluorescence
Imaging. Curr. Opin.Chem. Biol. 2003, 7 (5), 626–634.
(18) Wen, H.; Huang, Q.; Yang, X.-F.; Li, H. Spirolactamized
Benzothiazole-Substituted N,N-Diethylrhodol: A New Platform to
Construct Ratiometric Fluorescent Probes. Chem. Commun. 2013, 49
(43), 4956–4958.
(19) Kim, H. N.; Swamy, K. M. K.; Yoon, J. Study on Various
Fluorescein Derivatives as PH Sensors. Tetrahedron Lett. 2011, 52
(18), 2340–2343.
(20) Kamiya, M.; Asanuma, D.; Kuranaga, E.; Takeishi, A.;
Sakabe, M.; Miura, M.; Nagano, T.; Urano, Y. β-Galactosidase
Fluorescence Probe with Improved Cellular Accumulation Based on a
Spirocyclized Rhodol Scaffold. J. Am. Chem. Soc. 2011, 133 (33),
12960–12963.
(21) Peng, T.; Yang, D. Construction of a Library of Rhodol
Fluorophores for Developing New Fluorescent Probes. Org. Lett. 2010,
12 (3), 496–499.
(22) Davis, S.; Weiss, M. J.; Wong, J. R.; Lampidis, T. J.; Chen,
L. B. Mitochondrial and Plasma Membrane Potentials Cause Unusual
Accumulation and Retention of Rhodamine 123 by Human Breast
Adenocarcinoma-Derived MCF-7 Cells. J. Biol. Chem. 1985, 260 (25),
13844–13850.
ASSOCIATED CONTENT
Supporting Information
Molecular modeling and calculations, H and 13C NMR spectra,
1
UV/vis and fluorescence spectra, pH titrations, cell assays, and
animal study protocols. This material is available free of charge via
AUTHOR INFORMATION
Corresponding Author
* chinf@stanford.edu
Author Contributions
‡These authors contributed equally.
ACKNOWLEDGMENT
We thank Tim Doyle (Stanford Small Animal Imaging Facility)
and Kitty Lee (Stanford Cell Science Imaging Facility) for
technical assistance. The project was supported, in part, by the
National Center for Research Resources: S10 OD010580; the
National Science Foundation: CHE-1112194 (TEG); the
Department of Energy: DE-SC0008397 (FTC); The Ben and
Catherine Ivy Foundation (FTC); and the National Cancer Institute:
R21 CA205564 (FTC), F32 CA213620 (KSH), and T32 CA118681
(JLK).
REFERENCES
(1)
Xia, L.; Fang, C.; Chen, G.; Sun, C. Relationship between
the Extent of Resection and the Survival of Patients with Low-Grade
Gliomas: A Systematic Review and Meta-Analysis. BMC Cancer
2018, 18.
(2)
Sun, M. Z.; Ivan, M. E.; Clark, A. J.; Oh, M. C.; Delance, A.
R.; Oh, T.; Safaee, M.; Kaur, G.; Bloch, O.; Molinaro, A.; et al. Gross
Total Resection Improves Overall Survival in Children with Choroid
Plexus Carcinoma. J. Neurooncol. 2014, 116 (1), 179–185.
ACS Paragon Plus Environment