Journal of the American Chemical Society
Communication
photons of visible/near-infrared light. J. Am. Chem. Soc. 2018, 140,
ASSOCIATED CONTENT
Supporting Information
■
7
(
343−7346.
11) Slanina, T.; Shrestha, P.; Palao, E.; Kand, D.; Peterson, J. A.;
Dutton, A. S.; Rubinstein, N.; Weinstain, R.; Winter, A. H.; Klan, P. In
*
S
́
search of the perfect photocage: structure−reactivity relationships in
meso-methyl BODIPY photoremovable protecting groups. J. Am.
Chem. Soc. 2017, 139, 15168−15175.
General experimental considerations, detailed proce-
S1−S22, Tables S1 and S2, and Scheme S1 (PDF)
(12) Arora, K.; Herroon, M.; Al-Afyouni, M. H.; Toupin, N. P.;
Rohrabaugh, T. N., Jr; Loftus, L. M.; Podgorski, I.; Turro, C.;
Kodanko, J. J. Catch and release photosensitizers: combining dual-
action ruthenium complexes with protease inactivation for targeting
invasive cancers. J. Am. Chem. Soc. 2018, 140, 14367−14380.
AUTHOR INFORMATION
ORCID
Notes
The authors declare the following competing financial
interest(s): A PCT application was filed with No. PCT/
CN2019/101689.
(13) Matsuzaki, M.; Hayama, T.; Kasai, H.; Ellis-Davies, R. G. C.
Two-photon uncaging of γ-aminobutyric acid in intact brain tissue.
Nat. Chem. Biol. 2010, 6, 255−257.
(14) Li, M.; Wong, N.; Xiao, J.; Zhu, R.; Wu, L.; Dai, S.; Chen, F.;
Huang, G.; Xu, L.; Bai, X.; Geraskina, M. R.; Winter, A. H.; Chen, X.;
Liu, Y.; Fang, W.; Yang, D.; Phillips, D. L. Dynamics of oxygen-
independent photocleavage of blebbistatin as a one-photon blue or
two-photon near-infrared light-gated hydroxyl radical photocage. J.
Am. Chem. Soc. 2018, 140, 15957−15968.
(15) Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion
luminescent materials: advances and applications. Chem. Rev. 2015,
115, 395−465.
ACKNOWLEDGMENTS
This work was supported by Dr. Li Dak-Sum Research Fund
Start-up Fund) of The University of Hong Kong, Seed Fund
for Basic Research of The University of Hong Kong (No.
01711159053), Guangdong-Hong Kong Technology Coop-
eration Funding Scheme (No. 2017A050506016), and Young
Scientists Fund of the National Natural Science Foundation of
China (No. 81803469). The computations were performed
using research computing facilities provided by Information
Technology Services, The University of Hong Kong.
■
(16) Zhao, L.; Peng, J.; Huang, Q.; Li, C.; Chen, M.; Sun, Y.; Lin,
Q.; Zhu, L.; Li, F. Near-infrared photoregulated drug release in living
tumor tissue via yolk-shell upconversion nanocages. Adv. Funct. Mater.
(
2
(
014, 24, 363−371.
2
17) Wang, W.; Liu, Q.; Zhan, C.; Barhoumi, A.; Yang, T.; Wylie, R.
G.; Armstrong, P. A.; Kohane, D. S. Efficient triplet−triplet
annihilation-based upconversion for nanoparticle phototargeting.
Nano Lett. 2015, 15, 6332−6338.
(18) Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G.
Expanding anti-stokes shifting in triplet−triplet annihilation upcon-
version for in vivo anticancer prodrug activation. Angew. Chem., Int.
Ed. 2017, 56, 14400−14404.
REFERENCES
■
(19) Wu, M.; Congreve, D. N.; Wilson, M. W. B.; Jean, J.; Geva, N.;
(
1) Xie, C.; Sun, W.; Lu, H.; Kretzschmann, A.; Liu, J.; Wagner, M.;
Butt, H.; Deng, X.; Wu, S. Reconfiguring surface functions using
visible-light controlled metal-ligand coordination. Nat. Commun.
018, 9, 3842.
2) Lemke, E. A.; Summerer, D.; Geierstanger, B. H.; Brittain, S. M.;
Schultz, P. G. Control of protein phosphorylation with a genetically
encoded photocaged amino acid. Nat. Chem. Biol. 2007, 3, 769−772.
3) Hansen, M. J.; Hille, J. I. C.; Szymanski, W.; Driessen, A. J. M.;
Welborn, M.; Van Voorhis, T.; Bulovic, V.; Bawendi, M. G.; Baldo, M.
A. Solid-state infrared-to-visible upconversion sensitized by colloidal
nanocrystals. Nat. Photonics 2016, 10, 31−34.
2
(
(
20) Liu, Q.; Zhang, Y.; Peng, C.; Yang, T.; Joubert, L. M.; Chu, S.
−
2
Single upconversion nanoparticle imaging at sub-10 W cm
irradiance. Nat. Photonics 2018, 12, 548−553.
̌
21) Solomek, T.; Wirz, J.; Klan, P. Searching for improved
́
(
(
photoreleasing abilities of organic molecules. Acc. Chem. Res. 2015,
8, 3064−3072.
22) Klessinger, M.; Michl, J. Excited States and Photochemistry of
Feringa, B. L. Easily accessible, highly potent, photocontrolled
modulators of bacterial communication. Chem. 2019, 5, 1293−1301.
4) Li, Y.; Zhang, Y.; Wang, W. Phototriggered targeting of
4
(
(
Organic Molecules; Wiley-VCH Press: United States of America, 1995;
Chapter 7.
nanocarriers for drug delivery. Nano Res. 2018, 11, 5424−5438.
̌
5) Klan, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.;
́
(
(23) Zhang, Z.; Chen, C.; Chen, Y.; Wei, Y.; Su, J.; Tian, H.; Chou,
Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Photoremovable
protecting groups in chemistry and biology: reaction mechanisms
and efficacy. Chem. Rev. 2013, 113, 119−191.
P. Tuning the conformation and color of conjugated polyheterocyclic
skeletons by installing ortho-methyl groups. Angew. Chem., Int. Ed.
2018, 57, 9880−9884.
(
6) Hansen, M. J.; Velema, W. A.; Lerch, M. M.; Szymanski, W.;
Feringa, B. L. Wavelength-selective cleavage of photoprotecting
groups: strategies and applications in dynamic systems. Chem. Soc.
Rev. 2015, 44, 3358−3377.
(24) Lin, Y.; Koch, M.; Brigeman, A. N.; Freeman, D. M. E.; Zhao,
L.; Bronstein, H.; Giebink, N. C.; Scholes, G. D.; Rand, B. P.
Enhanced sub-bandgap efficiency of a solid-state organic intermediate
band solar cell using triplet−triplet annihilation. Energy Environ. Sci.
2017, 10, 1465−1475.
(25) Cui, X.; Zhao, J.; Zhou, Y.; Ma, J.; Zhao, Y. Reversible
photoswitching of triplet−triplet annihilation upconversion using
dithienylethene photochromic switches. J. Am. Chem. Soc. 2014, 136,
9256−9259.
(
7) Olejniczak, J.; Carling, C. J.; Almutairi, A. Photocontrolled
release using one-photon absorption of visible or NIR light. J.
Controlled Release 2015, 219, 18−30.
(8) Rwei, A. Y.; Wang, W.; Kohane, D. S. Photoresponsive
nanoparticles for drug delivery. Nano Today 2015, 10, 451−467.
(9) Lin, Q.; Yang, L.; Wang, Z.; Hua, Y.; Zhang, D.; Bao, B.; Bao, C.;
Gong, X.; Zhu, L. Coumarin photocaging groups modified with an
electron-rich styryl moiety at the 3-position: long-wavelength
excitation, rapid photolysis, and photobleaching. Angew. Chem., Int.
Ed. 2018, 57, 3722−3726.
(26) Deng, F.; Blumhoff, J.; Castellano, F. N. Annihilation limit of a
visible-to-UV photon upconversion composition ascertained from
transient absorption kinetics. J. Phys. Chem. A 2013, 117, 4412−4419.
(27) Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of
Photochemistry; CRC Press: Boca Raton, 2006; Chapter 12.
(28) Wegner, E. E.; Adamson, A. W. Photochemistry of complex
ions. III. absolute quantum yields for the photolysis of some aqueous
(
10) Peterson, J. A.; Wijesooriya, C.; Gehrmann, E. J.; Mahoney, K.
M.; Goswami, P. P.; Albright, T. R.; Syed, A.; Dutton, A. S.; Smith, E.
A.; Winter, A. H. Family of BODIPY photocages cleaved by single
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX