4
than our previously reported reaction of 3-(4-tolylthio)benzyne
Dobrovolsky, M. Lautens, J. Am. Chem. Soc. 2012, 134, 15572. d) T.
Hamura, Y. Chuda, Y. Nakatsuji, K. Suzuki, Angew. Chem., Int. Ed.
2012, 51, 3368. e) T. R. Hoye, B. Baire, D. Niu, P. H. Willoughby, B. P.
Woods, Nature 2012, 490, 208. f) S. Y. Yun, K.-P. Wang, N.-K. Lee, P.
Mamidipalli, D. Lee, J. Am. Chem. Soc. 2013, 135, 4668. g) H. Yoshida,
R. Yoshida, K. Takaki, Angew. Chem., Int. Ed. 2013, 52, 8629. h) F.-L.
Liu, J.-R. Chen, Y.-Q. Zou, Q. Wei, W.-J. Xiao, Org. Lett. 2014, 16,
8c
with benzyl azide (distal:proximal = 83:17 at −78 °C). In both
9e
Ia and II, as in the case of thiazolobenzyne, the increased p
19
character of the C–S bond, which renders the distal carbon of
11a
aryne triple bond more electron deficient, should be also
entertained as a significant factor that distorts the aryne
structure. Further theoretical analysis at the same level of theory
provided transition state (TS) structures for the cycloadditions
between Ia and methyl azide (Figure 3B). The calculated
activation energy for the distal cycloaddition via TS1 was 2.0
kcal/mol smaller than that for the proximal cycloaddition via
TS2, which was in good agreement with the observed
regioselectivity (Table 1, entry 3).
3768. i) Y. Mizukoshi, K. Mikami, M. Uchiyama, J. Am. Chem. Soc.
2015, 137, 74. j) M. Pawliczek, L. K. B. Garve, D. B. Werz, Org. Lett.
2015, 17, 1716. k) S. S. Bhojgude, D. R. Baviskar, R. G. Gonnade, A. T.
Biju, Org. Lett. 2015, 17, 6270. l) E. Demory, K. Devaraj, A. Orthaber,
P. J. Gates, L. T. Pilarski, Angew. Chem., Int. Ed. 2015, 54, 11765. m)
C. M. Holden, S. M. A. Sohel, M. F. Greaney, Angew. Chem., Int. Ed.
2016, 55, 2450. n) R. A. Dhokale, S. B. Mhaske, Org. Lett. 2016, 18,
3010. o) T. Ikawa, S. Masuda, A. Takagi, S. Akai, Chem. Sci. 2016, 7,
5206. p) N. F. F. Nathel, L. A. Morrill, H. Mayr, N. K. Garg, J. Am.
In summary, we have added thienobenzynes as a new entry
into an aryne toolbox, demonstrating that they serve as useful
intermediates for diverse multisubstituted benzothiophenes.
Further studies to expand the scope of the method and application
to the synthesis of bioactive compounds are now in progress.
Chem. Soc. 2016, 138, 10402. q) Y. Li, D. Qiu, R. Gu, J. Wang, J. Shi,
Y. Li, J. Am. Chem. Soc. 2016, 138, 10814.
a) S. Yoshida, T. Hosoya, Chem. Lett. 2013, 42, 583. b) Y. Sumida, T.
Kato, T. Hosoya, Org. Lett. 2013, 15, 2806. c) S. Yoshida, K. Uchida,
T. Hosoya, Chem. Lett. 2014, 43, 116. d) Y. Sumida, R. Harada, T.
Kato-Sumida, K. Johmoto, H. Uekusa, T. Hosoya, Org. Lett. 2014,
8
1
6, 6240. e) S. Yoshida, F. Karaki, K. Uchida, T. Hosoya, Chem.
The authors thank Central Glass Co., Ltd. for providing
Tf O. This work was supported by CREST from AMED,
2
Commun. 2015, 51, 8745. f) S. Yoshida, Y. Hazama, Y. Sumida, T.
Yano, T. Hosoya, Molecules 2015, 20, 10131. g) S. Yoshida, K.
Shimomori, T. Nonaka, T. Hosoya, Chem. Lett. 2015, 44, 1324. h) S.
Yoshida, T. Yano, Y. Misawa, Y. Sugimura, K. Igawa, S. Shimizu, K.
Tomooka, T. Hosoya, J. Am. Chem. Soc. 2015, 137, 14071.
Japan; the Project for Cancer Research and Therapeutic
Evolution (P-CREATE)from AMED, Japan; the Platform
for Drug Discovery, Informatics, and Structural Life Science
of MEXT and AMED, Japan; JSPS KAKENHI Grant
Numbers 15H03118 (B; T.H.), 16H01133 (Middle Molecular
Strategy; T.H.), and 26350971 (C; S.Y.); and Suntory
Foundation for Life Sciences (S.Y.).
9
a) S. Yoshida, T. Nonaka, T. Morita, T. Hosoya, Org. Biomol. Chem.
2014, 12, 7489. b) S. Yoshida, K. Uchida, K. Igawa, K. Tomooka, T.
Hosoya, Chem. Commun. 2014, 50, 15059. c) S. Yoshida, K. Uchida,
T. Hosoya, Chem. Lett. 2015, 44, 691. d) S. Yoshida, T. Morita, T.
Hosoya, Chem. Lett. 2016, 45, 726. e) S. Yoshida, T. Yano, Y.
Nishiyama, Y. Misawa, M. Kondo, T. Matsushita, K. Igawa, K.
Tomooka, T. Hosoya, Chem. Commun. 2016, 52, 11199. f) K.
Uchida, S. Yoshida, T. Hosoya, Synthesis 2016, in press; doi:
10.1055/s-0035-1562532.
Supporting Information for characterization of new
compounds is available electronically on J-STAGE.
1
1
0
1
a) T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron
Lett. 1991, 32, 6735. b) T. Ikawa, A. Takagi, Y. Kurita, K. Saito, K.
Azechi, M. Egi, K. Kakiguchi, Y. Kita, S. Akai, Angew. Chem., Int.
Ed. 2010, 49, 5563.
a) T. Hamura, Y. Ibusuki, K. Sato, T. Matsumoto, Y. Osamura, K.
Suzuki, Org. Lett. 2003, 5, 3551. b) G.-Y. J. Im, S. M. Bronner, A. E.
Goetz, R. S. Paton, P. H.-Y. Cheong, K. N. Houk, N. K. Garg, J. Am.
Chem. Soc. 2010, 132, 17933.
References and Notes
1
a) K. Koike, Z. Jia, T. Nikaido, Y. Liu, Y. Zhao, D. Guo, Org. Lett.
999, 1, 197. (b) A. Martinez, C. Gil, in Privileged Scaffolds in
1
Medicinal Chemistry: Design, Synthesis, Evaluation (Ed.: Bräse, S.),
Royal Society of Chemistry, Cambridge, 2015; pp. 245–248.
2
Our study on bioactive benzo[b]thiophenes, see: S. Shimizu, T.
Hosoya, M. Murohashi, S. Yoshida, WO 2013/118842.
1
1
2
3
See Supporting Information for details.
W. Lin, I. Sapountzis, P. Knochel, Angew. Chem., Int. Ed. 2005, 44,
3
4
5
T. Yamamoto, K. Takimiya, J. Am. Chem. Soc. 2007, 129, 2224.
B. Wu, N. Yoshikai, Org. Biomol. Chem. 2016, 14, 5402.
4258.
1
4
F. A. M. Dyke, D. M. Gill, J. N. Harvey, A. J. Hester, G. C. Lloyd-
Jones, M. P. Muñoz, I. R. Shepperson, Angew. Chem., Int. Ed. 2008,
For some recent approaches, see: a) I. Nakamura, T. Sato, Y.
Yamamoto, Angew. Chem., Int. Ed. 2006, 45, 4473. b) S. Yoshida, H.
Yorimitsu, K. Oshima, Org. Lett. 2007, 9, 5573. c) S. Mehta, R. C.
Larock, J. Org. Chem. 2010, 75, 1652. d) T. Inami, Y. Baba, T.
Kurahashi, S. Matsubara, Org. Lett. 2011, 13, 1912. e) B. Wu, N.
Yoshikai, Angew. Chem., Int. Ed. 2013, 52, 10496. f) Y. Masuya, M.
Tobisu, N. Chatani, Org. Lett. 2016, 18, 4312. g) H. Zang, J.-G. Sun,
X. Dong, P. Li, B. Zhang, Adv. Synth. Catal. 2016, 358, 1746.
For some recent reviews, see: a) A. Bhunia, S. R. Yetra, A. T. Biju,
Chem. Soc. Rev. 2012, 41, 3140. b) C. M. Gampe, E. M. Carreira,
Angew. Chem., Int. Ed. 2012, 51, 3766. c) P. M. Tadross, B. M.
Stoltz, Chem. Rev. 2012, 112, 3550. d) A. E. Goetz, T. K. Shah, N. K.
Garg, Chem. Commun. 2015, 51, 34. e) H. Miyabe, Molecules 2015,
47, 5067.
1
1
5
6
L. Li, M.-C. Mathieu, D. Denis, Al. G. Therien, Z. Wang, Bioorg.
Med. Chem. Lett. 2011, 21, 734.
M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S.
Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J.
Su, T. L. Windus, M. Dupuis, J. A. Montgomery J. Comput. Chem.
1993, 14, 1347.
6
7
1
1
1
7
8
9
A. E. Goetz, S. M. Bronner, J. D. Cisneros, J. M. Melamed, R. S. Paton, K.
N. Houk, N. K. Garg, Angew. Chem., Int. Ed. 2012, 51, 2758.
T. Ikawa, H. Kaneko, S. Masuda, E. Ishitsubo, H. Tokiwa, S. Akai,
Org. Biomol. Chem. 2015, 13, 520.
M. B. Smith, in March’s Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure, 7th Ed.; John Wiley & Sons: New Jersey,
20, 12558. f) S. Yoshida, T. Hosoya, Chem. Lett. 2015, 44, 1450.
For some recent reports, see: a) A. B. Smith III, W.-S. Kim, Proc. Natl.
Acad. Sci. U.S.A. 2011, 108, 6787. b) K. M. Allan, C. D. Gilmore, B. M.
Stoltz, Angew. Chem., Int. Ed. 2011, 50, 4488. c) D. A. Candito, D.
2013; pp. 25–27.