Polysiloxane-Based Salt-in-Polymer Electrolytes
J. Phys. Chem. B, Vol. 113, No. 47, 2009 15483
1.5 decades; (ii) the value of K decreases from 2.1 to 1.6; (iii)
the magnitude of the dispersion decreases by about half a
decade.
insight regarding the collective ion dynamics at higher frequen-
cies. Conductivity measurements at higher frequencies would
provide additional information on the short-time dynamics of
the ions.
The reduced value of the parameter K is usually attributed
to an increased carrier density.59 However, the first feature shows
that the effect of addition of borate esters to the salt-in-polymer
electrolytes results in an early onset (on the time scale) of DC
conduction. This implies that the effect of the borate esters as
additives not only enhances the carrier concentration but also
facilitates conduction. This is in agreement with the absolute
values of the DC conductivities (see Table 3). Evidently, for
borate esters, the DC conductivity sets in rapidly and earlier,
resulting in an enhanced value of σDC compared to the salt-in-
polymer electrolyte system without any additive or with other
additives.
From Table 3, one can infer that the decrease of the magnitude
of conductivity dispersion, B, defined as B ) γ exp[(E*/K)/
(kBT)] (see text above eq 4), is largely due to the decrease of γ
in the case of the borate esters. It has been discussed in relation
to fluidity and conductivity in CKN58 that the parameter γ
reflects a temperature-independent geometric factor. In short,
both the elementary displacive step and the correlated hops of
ions are favorably influenced by the addition of borate esters.
This insight into the ion dynamics has been made possible by
a systematic study and consistent modeling of the ion dynamics
in these systems. On the other hand, the VTF fits, though
excellent, can provide very little insight into the ion dynamics.
Acknowledgment. We are grateful to the Deutsche Fors-
chungsgemeinschaft for the financial support of this work within
SFB 458. Y. Karatas and N. Kaskhedikar would like to thank
the International Graduate School of Chemistry at the University
of Muenster for their doctoral fellowships.
References and Notes
(1) Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14 (11),
589–589.
(2) Gray, F. M. Solid Polymer Electrolytes: Fundamentals and Tech-
nological Applications; John Wiley & Sons: 1991.
(3) Speier, J. L.; Webster, J. A.; Barnes, G. H. J. Am. Chem. Soc. 1957,
79 (4), 974–979.
(4) Marciniec, B.; Gulinski, J.; Urbaniak, W.; Kornetka, Z. W.
ComprehensiVe Handbook on Hydrosilation, 2nd ed.; Pergamon: Oxford,
New York, 1992.
(5) Khan, I. M.; Yuan, Y. X.; Fish, D.; Wu, D.; Smid, J. Macromol-
ecules 1988, 21 (9), 2684–2689.
(6) Fish, D.; Khan, I. M.; Wu, E.; Smid, J. Brit. Polym. J. 1988, 20
(3), 281–288.
(7) Ballard, D. G. H.; Cheshire, P.; Mann, T. S.; Przeworski, J. E.
Macromolecules 1990, 23 (5), 1256–1264.
(8) Hooper, R.; Lyons, L. J.; Moline, D. A.; West, R. Organometallics
1999, 18 (17), 3249–3251.
(9) Mapes, M. K.; Schumacher, D.; Lyons, L. J.; Moline, D.; Hooper,
R.; West, R. Polym. Preprints (Am. Chem. Soc., DiVision Polym. Chem.)
2000, 41 (1), 309–310.
(10) Hooper, R.; Lyons, L.; Mapes, M.; Schumacher, D.; Moline, D.;
West, R. Macromolecules 2001, 34 (4), 931–936.
(11) Hooper, R.; Lyons, L. J.; Moline, D. A.; West, R. Silicon Chem.
2002, 1 (2), 121–128.
Conclusions
Mechanically stable, solvent-free salt-in-polymer electrolytes
from comblike polysiloxanes were prepared, and the effect of
nanosized inorganic particles and low molecular weight borate
esters on the conductivity were investigated. The sol-gel cross-
linking of the precursor polymer was straightforward and gave
(12) Oh, B.; Hyung, Y. E.; Vissers, D. R.; Amine, K. Electrochem. Solid-
State Lett. 2002, 5 (11), E59-E61.
(13) Oh, B.; Vissers, D.; Zhang, Z.; West, R.; Tsukamoto, H.; Amine,
K. J. Power Sources 2003, 119-121, 442–447.
(14) Zhang, Z. C.; Sherlock, D.; West, R.; Amine, K.; Lyons, L. J.
Macromolecules 2003, 36 (24), 9176–9180.
acceptable conductivity values in the order of 10-5 S·cm-1
.
Depressive impact of Al2O3 and SiO2 on the conductivity of
the polymer electrolyte was observed. The results of this work
and other inorganic fillers embedded amorphous polymer
electrolyte systems imply, therefore, that the structure of the
polymer host has more decisive effect on the electrical properties
of the composite polymer electrolytes than acid-base-type
interactions on the surface of inorganic fillers. Moreover, the
addition of low molecular weight borate esters brought about
quite promising results. The plasticizing effect of these low
molecular weight borate esters was more pronounced on the
conductivity improvement.
(15) Kang, Y.; Lee, W.; Suh, D. H.; Lee, C. J. Power Sources 2003,
119, 448–453.
(16) Zhang, Z. C.; Jin, J. J.; Bautista, F.; Lyons, L. J.; Shariatzadeh, N.;
Sherlock, D.; Amine, K.; West, R. Solid State Ionics 2004, 170 (3-4),
233–238.
(17) Karatas, Y.; Kaskhedikar, N.; Burjanadze, M.; Wiemhofer, H. D.
Macromol. Chem. Phys. 2006, 207 (4), 419–425.
(18) Weston, J. E.; Steele, B. C. H. Solid State Ionics 1982, 7 (1), 75–
79.
(19) Wieczorek, W.; Stevens, J. R.; Florjanczyk, Z. Solid State Ionics
1996, 85 (1-4), 67–72.
(20) Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.;
Stevens, J. R. J. Phys. Chem. B 1998, 102 (2), 352–360.
(21) Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature 1998,
394 (6692), 456–458.
A detailed study and modeling of the conductivity spectra
have helped clarify the various influences of the additives on
the ion dynamics in this system. It was found that the rather
slow elementary hopping rate, Γ0, and the rather high activation
energy for the elementary displacive step, E*, are indicative of
a strong coupling between the polymer host and the mobile
cation. Moreover, the addition of borate esters is found to
enhance DC conductivity by not only lowering the activation
energy of the elementary displacive step, E*, but also enhancing
the carrier concentration (decrease of the parameter K) and ease
of migration of ions (increase of the onset frequency of the
conductivity dispersion). It would also be useful to determine
the characteristic length of the displacement of an ion before
its motion becomes diffusive. This can be done by a careful
analysis of the real part of the permittivity spectra.60,69 Similarly,
suitable NMR techniques, such as Pulsed Field Gradient NMR
diffusion experiments combined with spin-lattice and spin-spin
relaxation measurements, have a potential to provide more
(22) Scrosati, B.; Croce, F.; Persi, L. J. Electrochem. Soc. 2000, 147
(5), 1718–1721.
(23) Appetecchi, G. B.; Croce, F.; Persi, L.; Ronci, F.; Scrosati, B.
Electrochim. Acta 2000, 45 (8-9), 1481–1490.
(24) Ahn, J. H.; Wang, G. X.; Liu, H. K.; Dou, S. X. J. Power Sources
2003, 119, 422–426.
(25) Florjanczyk, Z.; Marcinek, M.; Wieczorek, W.; Langwald, N. Pol.
J. Chem. 2004, 78 (9), 1279–1304.
(26) Croce, F.; Settimi, L.; Scrosati, B.; Zane, D. J. New Mater.
Electrochem. Syst. 2006, 9 (1), 3–9.
(27) Kim, C. H.; Kim, J. S.; Lee, M. H. Synth. Met. 1998, 98 (2), 153–
156.
(28) Chen-Yang, Y. W.; Chen, H. C.; Lin, F. J.; Liao, C. W.; Chen,
T. L. Solid State Ionics 2003, 156 (3), 383–392.
(29) Kaskhedikar, N.; Paulsdorf, J.; Burjanadze, A.; Karatas, Y.; Roling,
B.; Wiemhofer, H. D. Solid State Ionics 2006, 177 (26-32), 2699–2704.
(30) Kato, Y.; Yokoyama, S.; Ikuta, H.; Uchimoto, Y.; Wakihara, M.
Electrochem. Commun. 2001, 3 (3), 128–130.
(31) Kato, Y.; Hasumi, K.; Yokoyama, S.; Yabe, T.; Ikuta, H.; Uchimoto,
Y.; Wakihara, M. Solid State Ionics 2002, 150 (3-4), 355–361.
(32) Lee, H. S.; Yang, X. Q.; Xiang, C. L.; McBreen, J.; Choi, L. S. J.
Electrochem. Soc. 1998, 145 (8), 2813–2818.