Angewandte Chemie International Edition
10.1002/anie.202104563
RESEARCH ARTICLE
2
to 11.7 Ω cm ) upon addition of TBP. This result agrees well with
[3]
A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev.
2010, 110, 6595–6663.
the complicated redox behavior observed for the latter
electrolyte with additional TBP as manifested by the CV
measurements (Figure 2d). Besides, it is also notable that the
diffusion resistance (R
also considerably enlarged from 36.7 to 102.6 Ω cm when TBP
[
[
[
4]
5]
6]
C. C. Chen, J. S. Chen, V. S. Nguyen, T. C. Wei, C. Y. Yeh, Angew.
Chem. Int. Ed. 2021, 60, 2–10.
K. Zeng, Z. Tong, L. Ma, W. H. Zhu, W. Wu, Y. Xie, Energy Environ. Sci.
) of the electrolyte for [Cu(tmby)
2
]2+/+ is
d
2020, 13, 1617–1657.
2
S. Liang, C. Zhu, N. Zhang, S. Zhang, B. Qiao, H. Liu, X. Liu, Z. Liu, X.
Song, H. Zhang, C. Hao, Y. Shi, Adv. Mater. 2020, 32, 2000478.
K. Zeng, Y. Chen, W. H. Zhu, H. Tian, Y. Xie, J. Am. Chem. Soc. 2020,
142, 5154–5161.
is introduced, probably due to the changed size (more bulky) of
the [Cu(tmby)
2
+
2
]
species arising from the coordination of TBP.
[7]
[8]
2
On the contrast, only a marginal augment of R
d
(6.6 Ω cm ) is
found for [Cu(tme)]2+/+, which might originate from the increased
viscosity of the solution induced by addition of TBP. Overall, the
X. Meng, C. Yu, X. Song, J. Iocozzia, J. Hong, M. Rager, H. Jin, S.
Wang, L. Huang, J. Qiu, Z. Lin, Angew. Chem. Int. Ed. 2018, 57, 4682–
4686.
2
+/+
much improved durability observed for [Cu(tme)] -based
devices is linked to a smaller FF loss after aging, largely due to
the minor changes of Rct and R in the presence of TBP. Here, it
d
[
[
9]
O. Langmar, E. Fazio, P. Schol, G. de la Torre, R. D. Costa, T. Torres,
D. M. Guldi, Angew. Chem. Int. Ed. 2019, 58, 4056–4060.
10] Y. Ren, D. Sun, Y. Cao, H. N. Tsao, Y. Yuan, S. M. Zakeeruddin, P.
emphasizes once again that the coordination of TBP has major
implications for the degradation of devices based on copper
redox mediators with bidentate ligands, in a good line with a
similar observation for phenantroline ligands.[36]
Wang, M. Grätzel, J. Am. Chem. Soc. 2018, 140, 2405–2408.
[11] J. M. Ji, H. Zhou, Y. K. Eom, C. H. Kim, H. K. Kim, Adv. Energy Mater.
2020, 10, 2000124.
[12]
R. R. Rodrigues, H. Cheema, J. H. Delcamp, Angew. Chem. Int. Ed.
018, 57, 5472–5476.
13] Y. Saygili, M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A. B. Muñoz-
2
[
García, S. M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo,
L. Kavan, J.-E. Moser, M. Grätzel, A. Hagfeldt, M. Freitag, J. Am. Chem.
Soc. 2016, 138, 15087–15096.
Conclusion
In conclusion, we have reported for the first time copper
complexes bearing pentadentate ligands as redox mediators in
DSCs. Through molecular tailoring of the ligand structures, the
redox potential of [Cu(tme)]2+/+ complexes is positively shifted by
[14] D. Zhang, M. Stojanovic, Y. Ren, Y. Cao, F. T. Eickemeyer, E. Socie, N.
Vlachopoulos, J. E. Moser, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel,
Nat. Commun. 2021, 12, 1777.
[15]
S. Hattori, Y. Wada, S. Yanagida, S. Fukuzumi, J. Am. Chem. Soc.
2005, 127, 9648–9654.
420 mV, which leads to a higher photovoltage and a superior
[
[
16] Y. Bai, Q. Yu, N. Cai, Y. Wang, M. Zhang, P. Wang, Chem. Commun.
overall efficiency. Impressively, combined experimental results
confirmed that the coordination environment of the copper(II)
complexes with pentadentate ligands remains essentially
unchanged upon addition of TBP into the electrolyte. As a result,
DSCs based on [Cu(tme)]2+/+ complexes exhibited an excellent
long-term stability and maintained over 90% of the initial
2011, 47, 4376–4378.
17] Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F.
Giordano, S. M. Zakeeruddin, J. E. Moser, M. Freitag, A. Hagfeldt, M.
Grätzel, Nat. Commun. 2017, 8, 15390.
[18] M. Freitag, Q. Daniel, M. Pazoki, K. Sveinbjörnsson, J. Zhang, L. Sun,
A. Hagfeldt, G. Boschloo, Energy Environ. Sci. 2015, 8, 2634–2637.
[
[
19] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J.
Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel, A. Hagfeldt, Nat.
Photonics. 2017, 11, 372–378.
efficiency after 400
h under continuous irradiation, which
outperformed the devices incorporating the state-of-the-art
bipyridyl counterpart. The present work highlights that judicious
design of the coordination geometry of copper redox mediators
is crucial for development of more stable DSCs employing such
systems. Studies are underway to couple this copper redox
20] W. Zhang, Y. Wu, H. W. Bahng, Y. Cao, C. Yi, Y. Saygili, J. Luo, Y. Liu,
L. Kavan, J. E. Moser, A. Hagfeldt, H. Tian, S. M. Zakeeruddin, W. H.
Zhu, M. Grätzel, Energy Environ. Sci. 2018, 11, 1779–1787.
[21] J. He, Y. J. Jo, X. Sun, W. Qiao, J. Ok, T. Kim, Z. Li, Adv. Funct. Mater.
2020, 2008201.
mediator with boarder-spectrum photosensitizers or into
a
[
22] H. Jiang, Y. Ren, W. Zhang, Y. Wu, E. C. Socie, B. I. Carlsen, J. E.
Moser, H. Tian, S. M. Zakeeruddin, W. H. Zhu, M. Grätzel, Angew.
Chem. Int. Ed. 2020, 59, 9324–9329.
tandem electrolyte (redox mediator relay) to further boost the
overall performance, in accordance with the successful
examples as demonstrated by cobalt electrolytes.[11,46,47]
[
[
23] Y. Zhao, J. Shen, Z. Yu, M. Hu, C. Liu, J. Fan, H. Han, A. Hagfeldt, M.
Wang, L. Sun, J. Mater. Chem. A 2019, 7, 12808–12814.
24] M. Hu, J. Shen, Z. Yu, R. Z. Liao, G. G. Gurzadyan, X. Yang, A.
Hagfeldt, M. Wang, L. Sun, ACS Appl. Mater. Interfaces 2018, 10,
Acknowledgements
30409–30416.
[
[
25] W. L. Hoffeditz, M. J. Katz, P. Deria, G. E. Cutsail Iii, M. J. Pellin, O. K.
Farha, J. T. Hupp, J. Phys. Chem. C 2016, 120, 3731–3740.
26] A. Colombo, C. Dragonetti, M. Magni, D. Roberto, F. Demartin, S.
Caramori, C. A. Bignozzi, ACS Appl. Mater. Interfaces 2014, 6, 13945–
13955.
The authors acknowledge the financial support by the National
Natural Science Foundation of China (21975038, 22088102, and
21902015), the Fundamental Research Funds for the Central
Universities (DUT20RC(3)085), the Swedish Foundation for
Strategic Research (SSF), and the Swedish Energy Agency.
[27] M. Magni, R. Giannuzzi, A. Colombo, M. P. Cipolla, C. Dragonetti, S.
Caramori, S. Carli, R. Grisorio, G. P. Suranna, C. A. Bignozzi, D.
Roberto, M. Manca, Inorg. Chem. 2016, 55, 5245–5253.
Keywords: copper redox mediator • dye-sensitized solar cells •
ligand design • stability • energy conversion
[
28] M. Freitag, F. Giordano, W. Yang, M. Pazoki, Y. Hao, B. Zietz, M.
Grätzel, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 2016, 120, 9595–
9603.
[
[
1]
2]
M. Pazoki, U. B. Cappel, E. M. J. Johansson, A. Hagfeldt, G. Boschloo,
Energy Environ. Sci. 2017, 10, 672–709.
[29] Y. Saygili, M. Stojanovic, H. Michaels, J. Tiepelt, J. Teuscher, A.
Massaro, M. Pavone, F. Giordano, S. M. Zakeeruddin, G. Boschloo, J.
E. Moser, M. Grätzel, A. B. Muñoz-García, A. Hagfeldt, M. Freitag, ACS
Appl. Energy Mater. 2018, 1, 4950–4962.
M. K. Kashif, J. C. Axelson, N. W. Duffy, C. M. Forsyth, C. J. Chang, J.
R. Long, L. Spiccia, U. Bach, J. Am. Chem. Soc. 2012, 134, 16646–
16653.
[30] Y. Wang, T. W. Hamann, Chem. Commun. 2018, 54, 12361–12364.
7
This article is protected by copyright. All rights reserved.