C O M M U N I C A T I O N S
2
-1 -1 a
Table 1. Charge Carrier Mobilities (µ, cm ‚V ‚s ) and Current
4T), was synthesized, and blending 1 and 3 results in good n-type
transistor behavior in solution-cast films. The new n-type materials
developed in this work have solubility, processability, and perfor-
mance comparable to or greater than the most studied solution-
deposited p-type semiconductors (P3HT and F8T2 ), enabling
ready integration into CMOS fabrication. Variable temperature and
computational studies are in progress to fully understand this unique
class of organic semiconductors.
On/Off Ratios (Ion:Ioff) for OFETs Fabricated with Semiconductors
1
and 2 Measured at 25 °C
1
2
deposition
method
b
T
D
(°
C)
µ
e
I
on:Ioff
µ
h
I
on:Ioff
2l
4d
4
5
vapor
vapor
vapor
25
50
70
80
90
0.02
0.17
0.31
0.45
0.17
0.21
10
10
10
10
10
10
0.012
0.014
0.028
0.031
0.043
10
10
10
10
10
10
5
5
8
7
5
5
5
6
6
3
vapor
vapor
drop-castc
120
8 × 10
-4
Acknowledgment. We thank ONR (N00014-02-1-0909) and
the NSF-MRSEC program through the Northwestern Materials
Research Center (DMR-0076097) for support. We also thank Mr.
Myung-Han Yoon and Mr. Brooks Jones for helpful discussions,
and Ms. Smruti Amin for assistance with GPC characterization.
a
Calculated in the saturation regime. Typical standard deviations are
b
c
1
0-20%. Substrate deposition temperature. From xylenes.
I
off (estimated from the reported data) ∼5, V
methanesulfonic acid] solution processable semiconductors. Non-
fluorinated material 2 exhibits hole mobilities (µ ) in vapor-
T
not reported) from
Supporting Information Available: 1-3 syntheses, spectroscopic
data, crystal structures, and device fabrication details. This material is
available free of charge via the Internet at http://pubs.acs.org.
h
2
-1 -1
5
deposited films of 0.043 ( 0.008 cm ‚V ‚s (Ion:Ioff ) 10 ; V
T
∼
-20 V, Figure S7), however no electron conduction has been
observed. Drop-cast films of this material exhibit µ
cm ‚V ‚s . Similar dependencies of mobility on T
observed in both semiconductors (Table 1), consistent with the trend
h
) (8 ( 2) ×
References
-
4
2
-1 -1
10
D
are
(
1) (a) Chua, L.-L.; Zaumseil, J.; Chang, J.-F.; Ou, E. C.-W.; Ho, P. K.-H.;
Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. (b) Ando, S.;
Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem.
Soc. 2005, 127, 5336. (c) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti,
A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348. (d) Newman, C. R.;
Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann,
K. R. Chem. Mater. 2004, 16, 4436. (e) Mitzi, D. B.; Kosbar, L. L.;
Murray, C. E.; Copel, M.; Afzali, A. Nature 2004, 428, 299. (f) Sakamoto,
Y.; Suzuki, T.; Kobayashi, M.; Gao, Y.; Fukai, Y.; Inoue, Y.; Sato, F.;
Tokito, S. J. Am. Chem. Soc. 2004, 126, 8138. (g) Kunugi, Y.; Takimiya,
K.; Toyoshima, Y.; Yamashita, K.; Aso, Y.; Otsubo, T. J. Mater. Chem.
2004, 14, 1367. (h) Chesterfield, R. J.; McKeen, J. C.; Newman, C. R.;
Frisbie, C. D.; Ewbank, P. C.; Mann, K. R.; Miller, L. L. J. Appl. Phys.
in crystallinity observed by WAXRD.
Cyclic voltammetry of the new phenacyl semiconductors in THF
reveals two reversible single-electron reductions [E /E (V) vs SCE]
1 2
at -1.05/-1.16 in 1 and at -0.95/-1.30 in 2. Irreversible oxidative
features are observed at +1.07/+1.22 for 1. UV-vis absorption in
THF (Figure S8) indicates that the optical band gap (E
g
) is ∼2.40
eV for 1 and ∼2.46 eV for 2. Surprisingly, E
1
of n-type 1 is slightly
more negative (0.1 V) than that of p-type 2. On the basis of
2
004, 95, 6396. (i) Waldauf, C.; Schilinsky, P.; Perisutti, M.; Hauch, J.;
conventional understanding, redox processes related to MO
energetics1c,d are primary factors in determining majority charge
Brabec, C. J. AdV. Mater. 2003, 15, 2084. (j) Facchetti, A.; Yoon, M.-H.;
Stern, C. L.; Katz, H. E.; Marks, T. J. Angew. Chem., Int. Ed. 2003, 42,
3
900. (k) Chesterfield, R. J.; Newman, C. R.; Pappenfus, T. M.; Ewbank,
carrier type; therefore, it is surprising that 1 exhibits electron
mobility in the solid state, while 2 preferentially conducts holes.
An explanation may lie in subtle crystal structure molecular
conformational differences s the dihedral angle between the
electron-withdrawing carbonyl groups and the thiophene core
P. C.; Haukaas, M. H.; Mann, K. R.; Miller, L. L.; Frisbie, C. D. AdV.
Mater. 2003, 15, 1278. (l) Babel, A.; Janekhe, S. A. J. Am. Chem. Soc.
2003, 125, 13656. (m) Shim, M.; Javey, A.; Kam, N. W. S.; Dai, H. J.
Am. Chem. Soc. 2001, 123, 11512. (n) Katz, H. E.; Lovinger, A. J.;
Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A.
Nature 2000, 404, 478.
(
2) (a) Santato, C.; Manunza, I.; Bonfiglio, A.; Cicoira, F.; Cosseddu, P.;
Zamboni, R.; Muccini, M. Appl. Phys. Lett. 2005, 86, 141106/1. (b)
Crouch, D. J.; Skabara, P. J.; Heeney, M.; McCulloch, I.; Coles, S. J.;
Hursthouse, M. B. Chem. Commun. 2005, 1465. (c) Li, D.; Borkent, E.-
J.; Nortrup, R.; Moon, H.; Katz, H.; Bao, Z. Appl. Phys. Lett. 2005, 86,
(
intrinsically p-type) is much greater in 2 than in 1. This is probably
a result of crystal packing forces as the DFT-derived vacuum
geometry (Figure S9) indicates that the carbonyl oxygen lies closer
to the thiophene plane for both molecules. The resulting greater
conjugation in 1 should enhance stabilization of a negatively
charged core in the solid state. Since such packing effects are not
present in solution, the molecular geometry and, hence, the
electronic structure/energetics are more similar, in agreement with
042105/1. (d) Rang, Z.; Nathan, M. I.; Ruden, P. P.; Podzorov, V.;
Gershenson, M. E.; Newman, C. R.; Frisbie, C. D. Appl. Phys. Lett. 2005,
86, 123501/1. (e) Tulevski, G. S.; Miao, Q.; Fukuto, M.; Abram, R.; Ocko,
B.; Pindak, R.; Steigerwald, M. L.; Kagan, C. R.; Nuckolls, C. J. Am.
Chem. Soc. 2004, 126, 15048. (f) Hutchison, G. R.; Ratner, M. A.; Marks,
T. J. J. Am. Chem. Soc. 2005, 127, 2339. (g) Sundar, V. C.; Zaumseil, J.;
Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T.; Gershenson, M.
E.; Rogers, J. A. Science 2004, 303, 1644. (h) Gorjanc, T. C.; Levesque,
I.; D’Iorio, M. Appl. Phys. Lett. 2004, 84, 930. (i) Katz, H. E.; Kloc, C.;
Sundar, V.; Zaumseil, J.; Briseno, A. L.; Bao, Z. J. Mater. Res. 2004, 19,
MO computation and electrochemical data. Reorganization energies
may also effect these mobilities.1d,2f,4b
1
995. (j) Mohapatra, S.; Holmes, B. T.; Newman, C. R.; Prendergast, C.
Finally, polymer 3 forms high-quality films when spun-cast from
xylene (Figure S10). In THF, 3 undergoes a reversible two-electron
reduction at -1.23 V plus an additional irreversible reduction at
1.60 V and three single-electron oxidations at +0.96/+1.13 V
reversible) and +1.40 V. While spin-coated films of the neat
F.; Frisbie, C. D.; Ward, M. D. AdV. Funct. Mater. 2004, 14, 605. (k)
Morin, J.-F.; Drolet, N.; Tao, Y.; Leclerc, M. Chem. Mater. 2004, 16,
4619. (l) Chang, J.; Sun, B.; Breiby, D.; Nielsen, M.; Solling, T.; Giles,
M.; McCulloch, I.; Sirringhaus, H. Chem. Mater. 2004, 16, 4772. (m)
Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. AdV. Mater.
-
2003, 15, 2009. (n) Meng, H.; Zheng, J.; Lovinger, A. J.; Wang, B.-C.;
(
Van Patten, P. G.; Bao, Z. Chem. Mater. 2003, 15, 1778. (o) Meng, H.;
Bendikov, M.; Mitchell, G.; Holgeson, R.; Wudl, F.; Bao, Z.; Siegrist,
T.; Kloc, C.; Chen, C.-H. AdV. Mater. 2003, 15, 1090. (p) Halik, M.;
Klauk, H.; Zschieschang, U.; Scmid, G.; Ponomarenko, S.; Kiechmayer,
S.; Weber, W. AdV. Mater. 2003, 15, 917.
-6
2
-1 -1
polymer exhibit µ
e
∼ 10 cm ‚V ‚s (optimization in progress),
an initial study reveals that blends of 1 and 3 (500-1000 ppm, 1:1
weight ratio from xylenes) yield films with a µ
of ∼0.01
e
(
3) (a) Locklin, J.; Li, D.; Mannsfeld, S. C. B.; Borkent, E.-J.; Meng, H.;
Advincula, R.; Bao, Z. Chem. Mater. 2005, 17, 3366. (b) Murphy, A. R.;
Frechet, J. M. J.; Chang, P.; Lee, J.; Subramanian, V. J. Am. Chem. Soc.
2
-1 -1
4
cm ‚V ‚s (Ion:Ioff ) 10 ; V
T
∼ 60 V). Such blends are promising
for OFET printing since the polymer adjusts solution rheology,
while the molecular semiconductor enhances charge transport.
In summary, two new phenacyl molecular semiconductors were
synthesized, crystal structures determined, and OFETs fabricated.
2
004, 126, 1596. (c) Afzali, A.; Dimitrakopoulos, C. D.; Graham, T. O.
AdV. Mater. 2003, 15, 2066.
(4) (a) Vardeny, Z. V.; Heeger, A. J.; Dodabalapur, A. Synth. Met. 2005,
48, 1. (b) Kwon, O.; Coropceanu, V.; Gruhn, N. E.; Durivage, J. C.;
1
Laquindanum, J. G.; Katz, H. E.; Cornil, J.; Br e´ das J. L. J. Chem. Phys.
2004, 120, 8186. (c) Horowitz, G. J. Mater. Res. 2004, 19, 1946. (d)
Sirringhaus, H. Nat. Mater. 2003, 2, 641. (e) Rogers, J. A.; Bao, Z.; Katz,
H. E.; Dodabalapur, A. In Thin-Film Transistors; Kagan, C. R., Andry,
P., Eds.; Marcel Dekker: New York, 2003; p 377. (f) Dimitrakopoulos,
C. D.; Malenfant, P. R. L. AdV. Mater. 2002, 14, 99.
2
-1 -1
DFCO-4T exhibits very high µ
e
up to ∼0.51 cm ‚V ‚s (vapor-
2
-1 -1
deposited) and ∼0.25 cm ‚V ‚s (solution-cast) s the latter being
unprecedented for a solution-processed organic semiconductor. Any
minor air instability can be addressed by core substitution as
1c
previously demonstrated. The corresponding polymer, P(COFCO-
JA054276O
J. AM. CHEM. SOC.
9
VOL. 127, NO. 39, 2005 13477