1
080
J . Org. Chem. 1999, 64, 1080-1081
Communications
Ster eoselective P r ep a r a tion of
F u n ction a lized Alk en ylm a gn esiu m Rea gen ts
via a n Iod in e-Ma gn esiu m Exch a n ge
Rea ction
†
‡
Mario Rottl a¨ nder, Laure Boymond,
G e´ rard Cahiez,*,‡ and Paul Knochel*,†
Ta ble 1. P r od u cts of Typ e 3 Obta in ed a fter Qu en ch in g
F u n ction a lized Alk en ylm a gn esiu m of Typ e 2 P r ep a r ed
via a n Iod in e-Ma gn esiu m Exch a n ge of th e Iod oa lk en es
Fachbereich Chemie der Philipps-Universit a¨ t Marburg,
Hans-Meerwein-Strasse, D-35032 Marburg, Germany,
and Ecole Sup e´ rieure de Chimie Organique et Min e´ rale,
D e´ partment de Chimie 13, Boulevard de l’Hautil,
F-95092 Cergy-Pontoise, France
Received September 25, 1998
Organomagnesium reagents are versatile organometallic
reagents that have found wide applications.1 The high
reactivity of the carbon-magnesium bond precludes the
presence of many functionalities in these organometallics.
However, low-temperature Grignard syntheses should allow
the generation of polyfunctional organomagnesium reagents
since they do not react to a great extent at -78 °C with2
functional groups such as esters, amides, or nitriles.
Unfortunately, the low-temperature insertion of activated
3
magnesium (Rieke-Mg) is inhibited by these functionalities.
4
Recently, we have shown that polyfunctional aryl iodides
bearing an ester or nitrile function undergo a low-temper-
5
ature iodine-magnesium exchange in the presence of
i-PrMgBr or i-Pr2Mg. However, typical alkenyl iodides are
inert under these reaction conditions. Herein, we wish to
report reaction conditions allowing the stereoselective gen-
eration of alkenylmagnesium reagents as well as applica-
tions of this exchange reaction in solid-phase synthesis. In
strong contrast to functionalized aryl iodides for which the
iodine-magnesium exchange was complete using a stoichio-
metric amount of i-PrMgBr at -20 to -40 °C, alkenyl iodides
proved to be far less reactive. No exchange reaction was
observed with i-PrMgBr under these conditions. The reaction
of (E)-iodooctene (1a ) with i-Pr2Mg (1.1 equiv) requires a
reaction time of 18 h at 25 °C for complete conversion to
the corresponding (E)-octenylmagnesium derivative (2a ).
After treatment with tosyl cyanide (-78 °C, 5 h), the
corresponding nitrile 3a was obtained in 71% isolated yield
as only one stereoisomer showing that the iodine-magne-
†
Fachbereich Chemie der Philipps-Universit a¨ t Marburg.
Ecole Sup e´ rieure de Chimie Organique et Min e´ rale.
‡
(1) (a) Silverman, G. S.; Rakita, P. E., Eds. Handbook of Grignard-
Reagents; Marcel Dekker: 1996. For recent applications, see: (b) Klos, A.
M.; Heintzelman, G. R.; Weinreb, S. M. J . Org. Chem. 1997, 62, 3758. (c)
Taber, D. F.; Green, J . H.; Geremia, J . M. J . Org. Chem. 1997, 62, 9342. (d)
Hayashi, Y.; Shinokubo, H.; Oshima, K. Tetrahedron Lett. 1998, 39, 63. (e)
Heron, N. M.; Adams, J . A.; Hoveyda, A. H. J . Am. Chem. Soc. 1997, 119,
a
Reaction conditions for the iodine-magnesium exchange reac-
b
tion with i-PrMgBr or i-Pr2Mg. Key: (A) tosyl cyanide; (B)
6
205. (f) Houri, A. F.; Xu, Z.; Cogan, D. A.; Hoveyda, A. H. J . Am. Chem.
benzaldehyde; (C) diphenyl disulfide. c Isolated yields of analyti-
cally pure product showing a stereomeric purity of the double bond
Soc. 1995, 117, 2943.
(2) Rieke, R. D.; Xiong, H. J . Org. Chem. 1991, 56, 3109.
(3) Burns, T. P.; Rieke, R. D. J . Org. Chem. 1987, 52, 3674.
(4) Boymond, L.; Rottl a¨ nder, M.; Cahiez, G.; Knochel, P. Angew. Chem.
>
99%.
1
998, 110, 1801; Angew. Chem., Int. Ed. Engl. 1998, 37, 1701.
sium exchange on alkenyl iodides proceeds with complete
retention of configuration of the double bond (Scheme 1 and
Table 1). Similarly, the reaction of 2a with benzaldehyde
provides only (E)-1-phenyl-2-nonenol (3b; entry 2 of Table
(5) For a few examples of halogen-magnesium exchange reactions: (a)
Villieras, J . Bull. Soc. Chim. Fr. 1967, 1520. (b) Paradies, H. H.; G o¨ rbing,
M. Angew. Chem. 1969, 81, 293; Angew. Chem., Int. Ed. Engl. 1969, 8, 279.
(c) Smith, C. F.; Moore, G. J .; Tamborski, C. J . Organomet Chem. 1971, 33,
C21. (d) Cahiez, G.; Bernard, D.; Normant, J . F. J . Organomet. Chem. 1976,
1
) in 60% isolated yield. The reaction of a functionalized
1
1
2
1
13, 107. (e) Seyferth, D.; Lambert, R. L. J . Organomet. Chem. 1973, 54,
234. (f) Redwane, N.; Moreau, P.; Commeyras, A. J . Fluorine Chem. 1982,
0, 699. (g) Furukawa, N.; Shibutani, T.; Fujihara, H. Tetrahedron Lett.
987, 28, 5845. (h) Nishiyama, H.; Isaka, K.; Itoh, K.; Ohno, K.; Nagase,
alkenyl iodide like (E)-5-chloro-1-iodopentene (1b) with i-Pr2-
Mg is complete after 7 h at 25 °C, furnishing after respective
treatment with tosyl cyanide or benzaldehyde the stere-
ochemically pure (E)-products 3c and 3d in 72% and 62%
H.; Matsumoto, K.; Yoshiwara, H. J . Org. Chem. 1992, 57, 407. (i) Bolm,
C.; Pupowicz, D. Tetrahedron Lett. 1997, 38, 7349.
1
0.1021/jo981941l CCC: $18.00 © 1999 American Chemical Society
Published on Web 01/27/1999