Jia et al. Sci China Chem February (2015) Vol.58 No.2
7
1
977–1983
promising candidate as a good cathode interlayer for highly
efficient PSCs. The porphyrin molecules can induce the
vacuum-level shift of an Al cathode via the formation of
permanent dipoles at the interface between active layer and
metal electrode. For porphyrin molecules, the structural
modifidation space is very large. Therefore, optimization of
porphyrin molecules should be an efficient strategy to de-
velop organic cathode interlayers for high-performance
polymer solar cells by modifing porphyrin molecules.
1
1
5
6
Zhao Y, Xie Z, Qin C, Qu Y, Geng Y, Wang L. Enhanced charge
collection in polymer photovoltaic cells by using an enthanol-soluble
conjugated polyfluorene as cathode buffer layer. Sol Energ Mat Sol C,
2009, 93: 604–608
Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Hee-
ger AJ, Bazan GC. Improved high-efficiency organic solar cells via
incorporation of a conjugated polyelectrolyte interlayer. J Am Chem
Soc, 2011, 133: 8416–8419
17 Chang YM, Zhu R, Richard E, Chen CC, Li G, Yang Y. Electrostatic
self-assembly conjugated polyelectrolyte-surfactant complex as an
interlayer for high performance polymer solar cells. Adv Funct Mater,
2
012, 22: 3284–3289
1
1
2
8
9
0
Li SS, Lei M, Lv ML, Watkins SE, Tan ZA, Zhu J, Hou JH, Chen
XW, Li YF. [6,6]-Phenyl-C61-butyric acid dimethylamino ester as a
cathode buffer layer for high-performance polymer solar cells. Adv
Energy Mater, 2013, 3: 1569–1574
Ye H, Hu X, Jiang Z, Chen D, Liu X, Nie H, Su SJ, Gong X, Cao Y.
Pyridinium salt-based molecules as cathode interlayers for enhanced
performance in polymer solar cells. J Mater Chem A, 2013, 1: 3387–
This work was supported by the National Basic Research Program of
China (2014CB643500) and the Natural Science Foundation of China
(51273077, 51173065).
1
2
3
4
Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP,
Wu Y, Li G. Polymer solar cells with enhanced open circuit voltage
and efficient. Nat Photonic, 2009, 3: 649–653
3
394
Vasilopoulou M, Georgiadou DG, Douvas AM, Soultati A, Constan-
toudis V, Davazoglou D, Gardelis S, Palilis LC, Fakis M, Kennou S,
Lazarides T, Coutsolelos AG, Argitis P. Porphyin oriented self- as-
sembled nanostructures for efficient exciton dissociation in high-
performing organic photovoltaics. J Mater Chem A, 2014, 2: 182–192
Zhou J, Wan X, Liu Y, Zuo Y, Li Z, He G, Long G, Ni W, Li C, Su
X, Chen Y. Small molecules based on benzo[1,2-b:4,5-b′]dithiophene
unit for high-performance solution-processed organic solar cells. J
Am Chem Soc, 2012, 134: 16345–16351
Ye L, Zhang SQ, Zhao WC, Yao HF, Hou JH. Highly efficient
2
D-conjugated benzodithiophene-based photovoltaic polymer with
linear alkylthio side chain. Chem Mater, 2014, 26: 3603–3605
He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y. Enhanced power-
conversion efficiency in polymer solar cells using an inverted device
structure. Nat Photonic, 2012, 6: 591–595
He ZC, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y.
Simultaneous enhancement of open-circuit voltage, short-circuit cur-
rent density, and fill factor in polymer solar cells. Adv Mater, 2011,
2
2
1
2
Tsuda A, Osuka A. Fully conjugated porphyrin tapes with electronic
absorption bands that reach into infrared. Science, 2001, 293: 79–82
2
3: 4636–4643
5
6
Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L. For the
bright future—bulk heterojunction polymer solar cells with power
conversion efficiency of 7.4%. Adv Mater, 2010, 22: E135–E138
Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J. Replacing alkoxy groups
with alkylthienyl groups: a feasible approach to improve the proper-
ties of photovoltaic polymers. Angew Chem Int Ed, 2011, 50: 9697–
23 Zhang H, Zhang B, Zhu M, Grayson SM, Schmehl R, Jayawick-
ramarajah J. Water-soluble porphyrin nanospheres: enhancedphoto-
physical properties achieved viacyclodextrin driven double self-inclu-
sion. Chem Commun, 2014, 50: 4853–4855
24 Dong RJ, Bo Y, Tong G, Zhou Y, Zhu X, Lu Y. Self-assembly and
optical properties of a porphyrin-based amphiphile. Nanoscale, 2014,
6: 4544–4550
25 Huo C, Zhang HD, Zhang HY, Zhang HY, Yang B, Zhang P, Wang
Y. Synthesis and assembly with mesoprous silica MCM-48 of plati-
num prophyrin complexes bearing carbazeyl groups: spectroscopic
and oxygen sensing properties. Inorg Chem, 2006, 45: 4735–4742
26 Bhyrappa P, Young JK, Moore JS, Suslick KS. Dendrimer-metallo-
porphyrins: synthesis and catalysis. J Am Chem Soc, 1996, 118:
5708–5711
9
702
7
8
Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng
Y, Wang F. Dithienocarbazole and isoindigo based amorphous low
bandgap conjugated polymers for efficient polymer solar cells. Adv
Mater, 2013, 3: 471–476
Gao L, Zhang J, He C, Zhang Y, Sun QJ, Li YF. Effect of additives
on the photovoltaic properties of organic solar cells based on triphen-
ylamine-containing amorphous molecules. Sci China Chem, 2014, 57:
9
66–972
9
0
Liu X, Cai P, Chen DC, Chen JW, Su SJ, Cao Y. Small molecular
non-fullerene electron acceptors for P3HT-based bulk-heterojunction
solar cells. Sci China Chem, 2014, 57: 973–981
Liu J, Shao S, Fang G, Meng B, Xie Z, Wang L. High-efficiency
inverted polymer solar cells with transparent and work-function
27 Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper
PV, Darwent JR, Rosseinsky MJ. A water-stable porphyrin-based
metal-organic framework active for visible-light photocatalysis.
Angew Chem Int Ed, 2012, 124: 7558–7562
28 Janghouri M, Mohajerani E, Amini MM, Safari N. Porphyrin doping
of dichloride-bis(5,7-dichloroquinolin-8-olato)tin (IV) complex for
electroluminescence. J Porphyr Phthalocya, 2013, 17: 351–358
29 Graham KR, Yang Y, Sommer JR, Shelton AH, Schanze KS, Xue J,
Reynolds JR. Extended conjugation platinum prophyrins for use in
near-infrared emitting organic light emitting diodes. Chem Mater,
2011, 23: 5305–5312
30 Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BE, Ashari-
Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK , Grtäzel M.
Dye-sensitized solar cells with 13% efficiency achieved through the
molecular engineering of porphyrin sensitizers. Nat Chem, 2014, 6:
242–247
31 Luechai A, Gasiorowski J, Petsom A, Neugebauer H, Sariciftci NS,
Thamyongkit P. Photosensitizing porphyrin-triazine compound for
bulk heterojunction solar cells. J Mater Chem, 2012, 22: 23030–
23037
1
1
1
1
1
tunable MoO
3
-Al composite film as cathode buffer layer. Adv Mater,
2
012, 24: 2774–2779
1
2
3
4
Yang TB, Qin DH, Lan LF, Huang WB, Gong X, Peng JB, Cao Y.
Inverted polymer solar cells with a solution-processed zinc oxide thin
film as an electron collection layer. Sci China Chem, 2012, 55: 755–
7
59
Jo J, Na SI, Kim SS, Lee TW, Chung Y, Kang SJ, Vak D, Kim DY.
Three-dimensional bulk heterojunction morphology for achieving
high internal quantum efficiency in polymer solar cells. Adv Funct
Mater, 2009, 19: 2398–2406
Tang Z, Andersson LM, George Z, Vandewal K, Tvingstedt K,
Heriksson P, Kroon R, Andersson MR, Inganäs O. Interlayer for
modified cathode in highly efficient inverted ITO-free organic solar
cells. Adv Mater, 2012, 24: 554–558
Oh SH, Na SI, Jo J, Lim B, Vak D, Kim DY. Water-soluble
polyfluorenes as an interfacial layer leading to cathode-independent
high performance of organic solar cells. Adv Funct Mater, 2010, 20:
32 Singh VK, Kanaparthi RK, Giribabu L. Emerging molecular design
strategies of unsymmetrical phthalocyanines for dye-senstitized solar