Page 5 of 6
RSC Advances
DOI: 10.1039/C4RA14152K
4
-(Trifluoromethyl)benzaldehyde (2i). Eluent petroleum
of Shandong Province Higher Educational Science and
Technology Program (J13LD14), and the Scientific Research
Foundation of Qufu Normal University (BSQD 2012021).
ether/ethyl acetate (30:1). Yield 66% (230 mg from 352 mg
starting material). H NMR (CDCl , 400 MHz, ppm) δ 10.13 (s,
1
1
3
13
H), 8.04 (d, 2H, J = 8.0 Hz), 7.84 (d, 2H, J = 8.0 Hz). C NMR
Notes and references
5
(CDCl , 200 MHz, ppm) δ 191.1, 138.7, 135.8 (d, J = 26.1 Hz),
3
1
3
31.1, 129.9, 126.1(d, J = 4.1 Hz).
-Methoxybenzaldehyde (2j). Eluent petroleum ether/ethyl
60 1. R.A. Sheldon, I.W.C.E. Arends, A. Dijksman, Catalysis Today., 2000,
57,157ꢀ166.
2
0
2
. (a) M. Hudlicky, Oxidation in Organic Chemistry, ACS Monograph
Series, American Chemical Scociety, Washington, DC, 1990; (b) J.
March, Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 4th edn, John Wiley & Sons, New York, 1992.
acetate (20:1). Yield 96% (261 mg from 276 mg starting
material). H NMR (CDCl , 400 MHz, ppm) δ 9.98 (s, 1H), 7.47ꢀ
7.45 (m, 2H), 7.40 (s, 1H), 7.20ꢀ7.18 (m, 1H), 3.87 (s, 3H).
NMR (CDCl , 200 MHz, ppm) δ 192.1, 160.2, 137.9, 130.1,
1
3
acetate (20:1). Yield 72% (285 mg from 400 mg starting
material). H NMR (CDCl , 400 MHz, ppm) δ 9.98 (s, 1H), 7.64ꢀ
7
1
1
3
1
3
1
1
2
2
3
3
0
5
0
5
0
5
C
6
7
7
5
0
5
3
3. For selected examples, see: (a) G. J. ten Brink, I. W. C. E. Arends, R. A.
Sheldon, Science., 2000, 287, 1636ꢀ1639; (b) M. S. Sigman, D. R.
Jensen, Acc. Chem. Res., 2006, 39, 221ꢀ229; (c) C. Liu, S. Tang, A. Lei,
Chem. Commun., 2013, 49, 1324ꢀ1326; (d) G. F. Zhang, Y. Wang, X.
Wen, C. R. Ding, Y. Li, Chem. Commun., 2012, 48, 2979ꢀ2981.
23.5, 121.5, 112.2, 55.5.
-Phenoxybenzaldehyde (2k). Eluent petroleum ether/ethyl
1
3
4. For selected examples, see: (a) B. T. Guan, D. Xing, G. X. Cai, X. B.
Wan, N. Yu, Z. Fang, L. P. Yang, Z. J. Shi, J. Am. Chem. Soc., 2005,
.61 (m, 2H), 7.54ꢀ7.49 (m, 2H), 7.42ꢀ7.38 (m, 2H), 7.33ꢀ7.29 (m,
H), 7.20 (t, 1H, J = 8.0 Hz), 7.07 (t, 1H, J = 8.0 Hz). C NMR
13
1
27, 18004ꢀ18005; (b) H. Miyamura, R. Matsubara, Y. Miyazaki and S.
Kobayashi, Angew. Chem., Int. Ed., 2007, 46, 4151ꢀ4154; (c) B.
Karimi, F. K. Esfahani, Adv. Synth. Catal., 2012, 354, 1319ꢀ1326.
. For selected examples, see: (a) Z. Lu, T. Ladrak, O. Roubeau, J. van
der Toorn, S. J. Teat, C. Massera, P. Gamez, J. Reedijk, Dalton Trans.,
2009, 3559ꢀ3570; (b) J. M. Hoover, B. L. Ryland, S. S. Stahl, J. Am.
Chem. Soc., 2013, 135, 2357ꢀ2367; (c) J. Yu, J. Xu, M. Lu, Appl.
Organometal. Chem., 2013, 27, 606ꢀ610; (d) P. Karthikeyan, S. A.
Aswar, P. N. Muskawar, P. R. Bhagat, S. S. Kumar, Catalysis
Communications., 2012, 26, 189ꢀ193.
(CDCl , 200 MHz, ppm) δ 191.6, 158.4, 156.2, 138.1, 130.5,
3
1
30.1, 124.7, 124.6, 124.2, 119.5, 118.2.
5
4-Fluorobenzaldehyde (2l). Eluent petroleum ether/ethyl acetate
1
(30:1). Yield 79% (196 mg from 252 mg starting material). H
NMR (CDCl , 400 MHz, ppm) δ 9.97 (s, 1H), 7.91 (d, 2H, J =
8
ppm) δ 167.5 (d, J = 10.1 Hz), 132.9, 132.6 (d, J = 26.1 Hz),
116.3(d, J = 3.1 Hz).
Thiophene-2-carbaldehyde (2m). Eluent petroleum ether/ethyl
acetate (20:1). Yield 62% (139 mg from 228 mg starting
material). H NMR (CDCl , 400 MHz, ppm) δ 10.01 (s, 1H),
7
3
1
3
80
.0 Hz), 7.21 (d, 2H, J = 8.0 Hz). C NMR (CDCl , 200 MHz,
3
6. M. Kamitani, M. Ito, M. Itazaki, H. Nakazawa, Chem. Commun., 2014,
50, 7941ꢀ7944.
85
7. (a) Z. Rong, H. Pan, H. Yan, Y. Zhao, Org. Lett., 2014, 16, 208ꢀ211;
(b) R. Liu, X. Liang, C. Dong, X. Q. Hu, J. Am. Chem. Soc., 2004, 126,
1
3
4
112ꢀ4113; (c) L. Wang, J. Li, H. Yang, Y. Lv, S. Gao, J. Org. Chem.,
1
3
.87ꢀ7.83 (m, 2H), 7.29 (t, 1H, J = 4.0 Hz). C NMR (CDCl3,
2012, 77, 790ꢀ794.
200 MHz, ppm) δ 183.2, 144.2, 136.2, 135.5, 128.6.
Cinnamaldehyde (2n). Eluent petroleum ether/ethyl acetate 90 9. (a) R. B. Nasir Baig, R. S. Varma, Chem. Commun., 2013, 49, 752ꢀ770;
8. M. Holan, U. Jahn, Org. Lett. 2014, 16, 58ꢀ61
1
7
1
(b) M. B. Gawande, P. S. Brancoa, R. S. Varma, Chem. Soc. Rev., 2013,
(30:1). Yield 85% (224 mg from 268 mg starting material). H
4
2, 3371ꢀ3393; (c) D. Wang, Didier Astruc, Chem. Rev., 2014, 114,
NMR (CDCl , 400 MHz, ppm) δ 9.73 (s, 1H), 9.71 (s, 1H), 7.59ꢀ
3
6
949ꢀ6985 and references therein.
7
.57 (m, 4H), 7.47ꢀ7.44 (m, 6H), 6.75 (d, 1H, J = 8.0 Hz); 6.70 (d,
1
0. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed., 2012, 51,
1
3
1H, J = 8.0 Hz). C NMR (CDCl , 200 MHz, ppm) δ 193.7, 95 68ꢀ89.
3
1
1. For selected examples, see: (a) T. Mallat, A. Baiker, Chem. Rev., 2004,
04, 3037ꢀ3058; (b) R. A. Sheldon, I. W. C. E. Arends, G. J. Ten Brink,
1
52.8, 134.0, 131.3, 129.1, 128.6, 128.5.
1
Couclusions
A. Dijksman, Acc. Chem. Res., 2002, 35, 774ꢀ781; (c) K. Mori, T. Hara,
T. Mizugaki, K. Ebitani, K. Kaneda, J. Am. Chem. Soc., 2004, 126,
In conclusion, We have developed a novel, green and practical 100 10657ꢀ10666; (d) J. Chen, Q.H. Zhang, Y. Wang, H.L. Wan, Adv. Synth.
Catal., 2008, 350, 453ꢀ464; (e) H. Wang, S. X. Deng, Z. R. Shen, J. G.
Wang, D. T. Ding, T. H. Chen, Green Chem., 2009, 11, 1499ꢀ1502; (f)
G. Wu, X. Wang, N. Guan, L. Li. Appl. Catal. B: Environ., 2013, 136-
magnetic copper ferrite nanoparticleꢀcatalyzed method for
aerobic oxidation of primary alcohol to aldehyds. The method is
of the following advantages: (a) oxygenꢀstable and recyclable
4
0
1
37, 177ꢀ185.
copper ferrite nanoparticle as the catalyst; (b) environmentally 105 12. A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ACS Catal., 2011, 1,
4
8ꢀ53.
friendly water as the solvent; (c) without addition of any base,
ligand or additive; (d) easy workup procedure; (e) outstanding
tolerance of functional groups. All these results meet the
requirements of green and sustainable chemistry, so the present 110
method will attract much attention in academic and industrial
fields. Further studies to catalyze other chemical reaction with
copper(II) ferrite magnetic nanoparticles are ongoing.
1
3. (a) L. M. Rossi, N. J. S. Costa, F. P. Silva, R. Wojcieszak, Green
Chem., 2014, 16, 2906ꢀ2933; (b) M. B. Gawande, S. N. Shelke, R.
Zboril, R. S. Varma, Acc. Chem. Res., 2014, 47, 1338ꢀ1348; (c) M. B.
Gawande, P. S. Branco, Green Chem., 2011, 13, 3355ꢀ3359; (d) M. B.
Gawande, V. D. B. Bonifácio, R. Luque, P. S. Brancoa, R. S. Varma,
Chem. Soc. Rev., 2013, 42, 5522ꢀ5551; (b) R. Hudson, Y. Feng, R. S.
Varm, A. Moores, Green Chem.,2014, 16, 4493ꢀ4505.
4
5
14. For selected examples, see: (a) S. Yang, C. Wu, H. Zhou, Y. Yang, Y.
1
1
15
20
Zhao, C. Wang, W. Yang, J. Xu, Adv. Synth. Catal., 2013, 355, 53ꢀ58;
5
0
Acknowlegement
(b) A. Dandia, A. K. Jain, S. Sharma, RSC Advances., 2013, 3, 2924ꢀ
2
1
934; (c) S. M. Baghbanian, M. Farhang, RSC Adv., 2014, 4, 11624ꢀ
1633; (d) D. Kundu, N. Mukherjee, B. C. Ranu, RSC Adv., 2013, 3,
The authors gratefully acknowledge the financial support from
the National Natural Science Foundation of China (Nos.
117ꢀ125. (e) Zhang, R.; Liu, J.; Wang, S.; Niu, J.; Xia, C.; Sun, W.
ChemCatChem., 2011, 3, 146ꢀ149; (f) R. Hudson, S. Ishikawa, C.ꢀJ.
Li, A. Moores, Synlett. 2013, 24, 1637ꢀ1642; (g) P. Ramarao, Naveen;
B. Srinivasarao Arulananda, Catal. Commun., 2012, 29, 118ꢀ121; (h)
Kundu, D.; Chatterjee, T.; Ranu, B. C. Adv. Synth. Catal. 2013, 355,
2
1302110, 21302109 and 21375075), the Taishan Scholar
Foundation of Shandong Province, the Natural Science
Foundation of Shandong Province (ZR2013BQ017), the Project
5
5
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 5