2
540
Synlett
A. B. Abdessalem et al.
Letter
Soc. 1985, 107, 3235. (g) Ocain, T. D.; Rich, D. H. J. Med. Chem.
1992, 35, 451. (h) Mupparapu, N.; Khan, S.; Battula, S.;
Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A.
Org. Lett. 2014, 16, 1152.
OH
OH
Cs2CO3
NHCy
NHCy
Ph
2
a
Ph
CF3CH2OH
MW, 140°C
O
O
98%
3a
(6) (a) Chen, J. J.; Deshpande, S. V. Tetrahedron Lett. 2003, 44, 8873.
(
b) Ugi, I.; Fetzer, U. Chem. Ber. 1961, 94, 1116. (c) El Kaïm, L.;
Scheme 3 Isomerization of 3a into 2a
Pinot-Périgord, E. Tetrahedron 1998, 54, 3799. (d) For a review
on the Nef reaction of isocyanides see: La, Spisa. F.; Tron, G. C.;
El Kaïm, L. Synthesis 2014, 46, 829.
To conclude, we have proposed an alternative formation
of α-ketoamides using isocyanide-based multicomponent
reactions. Though the process is limited to the formation of
ketoamides substituted at the 4 position by aryl or het-
eroaryl groups, the addition of transition metals prone to
trigger allylic alcohol isomerization may be envisioned for
aliphatic derivatives.
(
(
(
7) (a) Passerini, M. Gazz. Chim. Ital. 1921, 51, 126. For reviews, see:
(
(
b) Banfi, L.; Riva, R. Org. React. (N. Y.) 2005, 65, 1.
c) Kazemizadeh, A. R.; Ramazani, A. Curr. Org. Chem. 2012, 16,
4
18.
8) (a) Semple, J. E.; Owens, T. D.; Nguyen, K.; Levy, O. E. Org. Lett.
000, 2, 2769. (b) Banfi, L.; Guanti, G.; Riva, R. Chem. Commun.
2
2000, 985. (c) Owens, T. D.; Araldi, G.-L.; Nutt, R. F.; Semple, J. E.
Tetrahedron Lett. 2001, 42, 6271.
9) (a) Nakamura, M.; Inoue, J.; Yamada, T. Bioorg. Med. Chem. Lett.
2000, 10, 2807. (b) Xu, P.; Lin, W.; Zhou, X. Synthesis 2002, 1017.
Acknowledgment
(
10) Grassot, J. M.; Masson, G.; Zhu, J. Angew. Chem. Int. Ed. 2008, 47,
47.
11) Yu, H.; Gai, T.; Sun, W. L.; Zhang, M. S. Chin. Chem. Lett. 2011, 22,
79.
We thank the University of Bizerte for a fellowship given to A.
Ben Abdessalem and we thank the ENSTA ParisTech for financial sup-
port
9
(
3
(
(
12) Dos Santos, A.; El Kaïm, L. Synlett 2014, 25, 1901.
13) Cordier, M.; Dos Santos, A.; El Kaïm, L.; Narboni, N. Chem.
Commun. 2015, 51, 6411.
Supporting Information
(
14) Typical Procedure for 2a: The Passerini adduct 1a (102 mg,
Supporting information for this article is available online at
0
.338 mmol) and Cs CO (1.0 equiv, 110 mg) were suspended in
2 3
http://dx.doi.org/10.1055/s-0035-1560632.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
trifluoroethanol (TFE; 3.0 mL) in a 10-mL reaction glass vial
containing a magnetic stir bar. The vial was flashed with argon,
sealed and irradiated with stirring (CEM Discover Microwave.
Settings: 140 °C, 150 W) during 15 min. Upon completion of the
reaction time, the vial was cooled to r.t. The reaction mixture
was diluted with H O (30 mL) and extracted with CH Cl (3 × 15
References and Notes
(1) (a) Peese, K. Drug Discovery Today 2010, 15, 406. (b) Nelson, D.
R. Hepatology 2009, 50, 997.
2
2
2
mL). Purification by flash column chromatography on silica gel
(
2) Lescop, C.; Herzner, H.; Siendt, H.; Bolliger, R.; Henneböhle, M.;
Weyermann, P.; Briguet, A.; Courdier-Fruh, I.; Erb, M.; Foster,
M.; Meier, T.; Magyarb, J. P.; von Sprecher, A. Bioorg. Med. Chem.
Lett. 2005, 15, 5176.
(
CH Cl –petroleum ether, 20:80) gave 2a as a white solid (mp
2 2
8
6.0–86.5 °C) isolated in 93% yield (81 mg); R 0.6 (CH Cl –
f 2 2
1
petroleum ether, 80:20). H NMR (400 MHz, CDCl ): δ = 7.26–
3
7.30 (m, 2 H, H-Ar), 7.17–7.22 (m, 3 H, H-Ar), 6.82 (d, J = 6.3 Hz,
1 H, NH), 3.67–3.77 (m, 1 H), 3.28 (t, J = 7.5 Hz, 2 H), 2.93 (t, J =
7.5 Hz, 2 H), 1.87–1.91 (m, 2 H, H-Cy), 1.60–1.76 (m, 3 H, H-Cy),
1
.32–1.42 (m, 2 H, H-Cy), 1.13–1.25 (m, 3 H, H-Cy). 13C NMR
(
(
(
3) Steuer, C.; Gege, C.; Fischl, W.; Heinonen, K. H.; Bartenschlager,
R.; Klein, C. D. Bioorg. Med. Chem. 2011, 19, 4067.
4) Bierer, B. E.; Somers, P. K.; Wandless, T. J.; Burakoff, S. J.;
Schreiber, S. L. Science 1990, 250, 556.
5) For a selection of α-ketoamide synthesis, see: (a) Singh, R. P.;
Shreeve, J. M. J. Org. Chem. 2003, 68, 6063. (b) Yang, Z.; Zhang,
Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2002, 4,
(
100.6 MHz, CDCl ): δ = 198.8, 159.0, 140.5, 128.6, 128.5, 126.3,
3
4
2
1
8.4, 38.4, 32.7, 29.2, 25.4, 24.8. HRMS: m/z calcd for C16H21NO2:
59.1572; found: 259.1564. IR (CHCl ): 3398, 2938, 2858, 1720,
3
–1
682, 1522, 1498, 1453, 1373, 1116, 892 cm
.
1103. (c) Zhu, J.; Wong, H.; Zhang, Z.; Yin, Z.; Kadow, J. F.;
(
15) (a) Bossio, R.; Marcos, C. F.; Marcaccini, S.; Pepino, R. Tetrahe-
dron Lett. 1997, 38, 2519. (b) Bossio, R.; Marcos, C. F.;
Marcaccini, S.; Pepino, R. Synthesis 1997, 1389. (c) Bossio, R.;
Marcos, C. F.; Marcaccini, S.; Pepino, R. Heterocycles 1997, 1589.
Meanwell, N. A.; Wang, T. Tetrahedron Lett. 2005, 46, 3587.
(
(
d) Wasserman, H. H.; Ho, W. B. J. Org. Chem. 1994, 59, 4364.
e) Wasserman, H. H.; Petersen, A. K.; Xia, M. Tetrahedron 2003,
59, 6771. (f) Ozawa, F.; Soyama, H.; Yanagihara, H.; Aoyama, I.;
Takino, H.; Izawa, K.; Yamamoto, T.; Yamamoto, A. J. Am. Chem.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2537–2540