Communication
ChemComm
This research was supported financially by the Division of
Chemical Sciences, Geosciences, and Biosciences, Office of
Basic Energy Sciences, US Department of Energy.
Conflicts of interest
There are no conflicts to declare.
References
1 M. R. Benzigar, S. N. Talapaneni, S. Joseph, K. Ramadass, G. Singh,
J. Scaranto, U. Ravon, K. Al-Bahily and A. Vinu, Chem. Soc. Rev., 2018,
47, 2680–2721.
Fig. 4 (A) UV-Vis spectroscopy in the presence of HEꢁ-Py-NION for the
water solution of MnO4ꢁ. (B) Removal (in %) of MnO4 ions at different
ꢁ
time intervals. Inset: Photograph of (i) the starting MnO4 solution and
ꢁ
(ii) the MnO4 solution in the presence of HE-Py-NION after 25 min.
´
´
2 M. Shamzhy, M. Opanasenko, P. Concepcion and A. Martınez,
Chem. Soc. Rev., 2019, 48, 1095–1149.
3 M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma and H. Zhang, Chem.
Soc. Rev., 2018, 47, 6267–6295.
4 S. Kandambeth, K. Dey and R. Banerjee, J. Am. Chem. Soc., 2019, 141,
1807–1822.
5 J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu and D. Wu, Adv.
Mater., 2019, 31, 1802922.
6 X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez and B.-L. Su,
Chem. Soc. Rev., 2017, 46, 481–558.
7 J.-K. Sun, M. Antonietti and J. Yuan, Chem. Soc. Rev., 2016, 45, 6627–6656.
8 S. Zhang, K. Dokko and M. Watanabe, Chem. Sci., 2015, 6, 3684–3691.
9 P. Zhang, Z.-A. Qiao, X. Jiang, G. M. Veith and S. Dai, Nano Lett.,
2015, 15, 823–828.
10 C. Gao, G. Chen, X. Wang, J. Li, Y. Zhou and J. Wang, Chem.
Commun., 2015, 51, 4969–4972.
11 Y. Tian, J. Song, Y. Zhu, H. Zhao, F. Muhammad, T. Ma, M. Chen
and G. Zhu, Chem. Sci., 2019, 10, 606–613.
12 O. Buyukcakir, S. H. Je, D. S. Choi, S. N. Talapaneni, Y. Seo, Y. Jung,
K. Polychronopoulou and A. Coskun, Chem. Commun., 2016, 52,
934–937.
Recently, Ghosh et al. has reported the application of a
viologen-based cationic organic network in the capture of
hazardous anioniꢁc pollutants from water with high capacity.30
Herein, MnO4 was taken as a model ion, which is a close
chemical analogue of TcO4ꢁ and ReO4ꢁ (Mn, Tc and Re belonged to
the same group in the periodic table). The MnO4ꢁ capture study was
monitored at 525 nm (lmax) (for experimental details, see the ESI†).
In the previous study using an ionic viologen-organic network as a
scavenger,30 0.5 mM solution of MnO4 was adopted and almost
ꢁ
complete removal was observed within 5 min. However, when the
ꢁ
performance of HE-Py-NION in MnO4 capture was measured first
under the same conditions (0.5 mM MnO4ꢁ 2 mL and HE-Py-NION
1 mg), pretty rapid adsorption wꢁas observed within a few seconds.
Comparatively, almost no MnO4 absorption was observed in the
presence of Py-POP under the otherwise identical conditions (Fig. S4, 13 Q. Sun, Y. Jin, B. Aguila, X. Meng, S. Ma and F.-S. Xiao, Chem-
SusChem, 2016, 10, 1160–1165.
14 X. Wang, Y. Zhou, Z. Guo, G. Chen, J. Li, Y. Shi, Y. Liu and J. Wang,
ESI†), probably owing to the hydrophobic nature and hence poor
dispersity of Py-POP in aqueous solution. Therefore, the introduction
Chem. Sci., 2015, 6, 6916–6924.
of hydroxyl groups within the backbone could render good dispersity 15 N. J. Gesmundo and D. A. Nicewicz, Beilstein J. Org. Chem., 2014, 10,
1272–1281.
of the polymer in aqueous solutions. In order to make the process
measurable, a higher MnO4 concentration of 5 mM was used
16 K. Wang, L. G. Meng and L. Wang, Org. Lett., 2017, 19, 1958–1961.
17 J. Wu, P. S. Grant, X. Li, A. Noble and V. K. Aggarwal, Angew. Chem.,
ꢁ
instead and the result is shown in Fig. 4. A rapid decrease in the
absorption spectra was observed and within 25 min the solution
got decolorized from purple, indicating the complete removal.
A maximum adsorption capacity of 1.145 g gꢁ1 could be achieved
for KMnO4 by HE-PyNION, exceeding that of the Ionic viologen-
Int. Ed., 2019, 58, 5697–5701.
18 Z. Yang, H. Chen, B. Li, W. Guo, K. Jie, Y. Sun, D.-E. Jiang, I. Popovs
and S. Dai, Angew. Chem., Int. Ed., 2019, 58, 13763–13767.
19 J. Zhang, Z.-A. Qiao, S. M. Mahurin, X. Jiang, S.-H. Chai, H. Lu,
K. Nelson and S. Dai, Angew. Chem., Int. Ed., 2015, 54, 4582–4586.
¨
20 H. Kosonen, S. Valkama, A. Nykanen, M. Toivanen, G. ten Brinke,
J. Ruokolainen and O. Ikkala, Adv. Mater., 2006, 18, 201–205.
organic network (0.297 g gꢁ1 30
and the Cu(I)-based cationic MOF
)
¨
21 S. Valkama, A. Nykanen, H. Kosonen, R. Ramani, F. Tuomisto,
(SLUG-21) (0.283 g gꢁ1).24 We proposed that the synergistic effect of
abundant anionic and hydroxyl functionalities in the polymer back-
bone as well as the high surface area of HE-Py-NION played a crucial
P. Engelhardt, G. ten Brinke, O. Ikkala and J. Ruokolainen, Adv.
Funct. Mater., 2007, 17, 183–190.
22 G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma and Z. Liu, Angew.
Chem., Int. Ed., 2016, 55, 9685–9689.
role in achieving the superior oxo-anion removal performance seen 23 L. Keith and W. Telliard, Environ. Sci. Technol., 1979, 13, 416–423.
24 H. Fei, D. L. Rogow and S. R. J. Oliver, J. Am. Chem. Soc., 2010, 132,
in these systems.
7202–7209.
In summary, a novel two-step synthetic pathway was developed
25 A. V. Desai, B. Manna, A. Karmakar, A. Sahu and S. K. Ghosh, Angew.
for the preparation of hydroxyl-group functionalized porous ionic
polymers. The synthesis was conducted under metal-free conditions
and without the need for the synthesis of ionic pair-containing
Chem., Int. Ed., 2016, 55, 7811–7815.
26 L. Zhu, L. Zhang, J. Li, D. Zhang, L. Chen, D. Sheng, S. Yang, C. Xiao,
J. Wang, Z. Chai, T. E. Albrecht-Schmitt and S. Wang, Environ. Sci.
Technol., 2017, 51, 8606–8615.
monomers. Notably, this is also a straightforward way to induce 27 X. Zhao, X. Bu, T. Wu, S.-T. Zheng, L. Wang and P. Feng, Nat.
Commun., 2013, 4, 2344.
28 Y. Li, Z. Yang, Y. Wang, Z. Bai, T. Zheng, X. Dai, S. Liu, D. Gui,
other functional groups into the ionic skeleton simply by employing
various amines. The resultant polymer HE-Py-NION showed rapid
W. Liu, M. Chen, L. Chen, J. Diwu, L. Zhu, R. Zhou, Z. Chai,
adsorption of MB owing to the existence of abundant hydroxyl
groups among the backbone. The structural characterization of
the polymer also made it a promising candidate as an efficient
scavenger of toxic oxo-anions from water.
T. E. Albrecht-Schmitt and S. Wang, Nat. Commun., 2017, 8, 1354.
29 S. Keskin, T. M. van Heest and D. S. Sholl, ChemSusChem, 2010, 3,
879–891.
30 P. Samanta, P. Chandra, S. Dutta, A. V. Desai and S. K. Ghosh, Chem.
Sci., 2018, 9, 7874–7881.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13450--13453 | 13453