Organic Letters
Letter
Surry, D. S.; Buchwald, S. L. Org. Lett. 2013, 15, 3734. (h) Yang, Y.;
Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615.
(i) Kinzel, T.; Zhang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132,
14073. (j) Lee, B. K.; Biscoe, M. R.; Buchwald, S. L. Tetrahedron Lett.
2009, 50, 3672.
(10) Schwesinger, R.; Schlempe, H.; Hasenfratz, C.; Willaredt, J.;
Dambacher, T.; Breuera, T.; Ottaway, C.; Fletschingera, M.; Boele, J.;
Fritz, H.; Putzas, D.; Rotter, H. W.; Bordwell, F. G.; Satish, A. V.; Ji, G.
Z.; Petersd, E. M.; Petersd, K.; von Schneringd, H. G.; Wake, L. Liebigs
Ann. 1996, 1055.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and spectral data for all new
compounds. The Supporting Information is available free of
■
S
AUTHOR INFORMATION
Corresponding Author
■
(11) 5-Phenyl-3-bromopyridine 13 was used in place of 5 for the
water couplings because the product was easier to quantify by UPLC
analysis. Also, the aryl chloride and aryl iodide variants of 13 are not
commercially available and were not interrogated.
Notes
(12) P2Et Phosphazene has been minimally used in transition metal
catalysis, likely due to the current expense of this base. For many
complex, sensitive synthetic targets in drug discovery or natural
products synthesis, the cost of the reaction substrate prepared through
multistep synthesis is much higher than this base cost.
(13) For leading references on robustness screening, as well as an
example of ester stability issues in C−N coupling: (a) Collins, K. D.;
Glorius, F. Nat. Chem. 2013, 5, 597. (b) Collins, K. D.; Glorius, F. Acc.
Chem. Res. 2015, 48, 619.
(14) Conditions chosen for this study and those for the complex aryl
halide study (in Figure 1) are similar to those previously reported in
the literature: (a) Surry, D. S.; Buchwald, S. L. Chem. Sci. 2011, 2, 27.
(b) Lee, D. Y.; Hartwig, J. F. Org. Lett. 2005, 7, 1169.
(15) The use of P2Et/tBuXPHOS with tert-amyl alcohol, conditions
that were found to be most reactive for several reactions, also gave full
conversion with 3-chloropyridine 14 and piperidine 7 in the presence
of esters 16 and 17, with minimal ester decomposition.
(16) Room temperature hydroxylation has been recently reported;
however, nonactivated N-heterocyclic substrates require heating:
(a) Lavery, C. B.; Rotta-Loria, N. L.; McDonald, R.; Stradiotto, M.
Adv. Synth. Catal. 2013, 355, 981. (b) Cheung, C. W.; Buchwald, S. L.
J. Org. Chem. 2014, 79, 5351. (c) Sergeev, A. G.; Schulz, T.; Torborg,
C.; Spannenberg, A.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed.
2009, 48, 7595.
(17) Stamford, A. W.; Scott, J. D.; Li, S. W.; Babu, S.; Tadesse, D.;
Hunter, R.; Wu, Y.; Misiaszek, J.; Cumming, J. N.; Gilbert, E. J.;
Huang, C.; McKittrick, B. A.; Hong, L.; Guo, T.; Zhu, Z.; Strickland,
C.; Orth, P.; Voigt, J. H.; Kennedy, M. E.; Chen, X.; Kuvelkar, R.;
Hodgson, R.; Hyde, L. A.; Cox, K.; Favreau, L.; Parker, E. M.;
Greenlee, W. J. ACS Med. Chem. Lett. 2012, 3, 897.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the Merck Research Laboratories (MRL)
Postdoctoral Research Program for financial support of A.B.S.;
MRL Colleagues Drs. Tim Cernak, Ana Bellomo, Alan Hyde,
Jingjun Yin, Rebecca Ruck, and Artis Klapars for helpful
discussions; Nicholas Perrotto for assistance with Chemspeed
robotics; and Jake Waldman for lab assistance.
REFERENCES
■
(1) For a comprehensive review on modern Pd-catalyzed reactions,
see: Palladium-Catalyzed Coupling Reactions: Practical Aspects and
́
Future Developments; Molnar, A., Ed.; Wiley-VCH Verlag GmbH &
Co. KgaA: Weinheim, Germany, 2013.
(2) (a) Biscoe, M. R.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130,
6686. (b) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci.
2013, 4, 916. (c) Bruno, N. C.; Buchwald, S. L. Org. Lett. 2013, 15,
2876. (d) Bruno, N. C.; Nootaree, N.; Buchwald, S. L. J. Org. Chem.
2014, 79, 4161.
(3) For an example of LiHMDS as a nucleophile in Pd-catalysis, see:
Huang, X.; Buchwald, S. L. Org. Lett. 2001, 3, 3417. For a similar
example of NaOtBu coupling, see: Kataoka, N.; Shelby, Q.; Stambuli, J.
P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553.
(4) For a recent discussion on the inhibition of Pd C−N coupling by
́
amine bases, see: Sunesson, Y.; Lime, E.; Nilsson Lill, S. O.; Meadows,
R. E.; Norrby, P. J. Org. Chem. 2014, 79, 11961 and references therein.
(5) For a review on amine decomposition in Pd-catalysis, see:
Muzart, J. J. Mol. Catal. A: Chem. 2009, 308, 15.
(18) The couplings of amines 6 (with Brettphos Pd G3) and 7 (with
RuPhos Pd G2) with bromide 13 have not been reported in the
literature at room temperature, so we independently verified that
LiHMDS is indeed capable of coupling these nucleophiles at rt (5%
catalyst, THF, 1.5 equiv of nucleophile, 2 equiv of base, 18 h).
(6) For a comprehensive review on organic superbases, see:
Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes
and Related Organocatalysts; Ishikawa, T., Ed.; John Wiley & Sons, Ltd:
Chichester, U.K., 2009.
(7) References using superbases in transition-metal catalysis:
(a) Palomo, C.; Oiarbide, M.; Lop
Commun. 1998, 2091. (b) Palomo, C.; Oiarbide, M.; Lop
Gomez-Bengoa, E. Tetrahedron Lett. 2000, 41, 1283. (c) Tundel, R. E.;
́
ez, R.; Gom
́
ez-Bengoa, E. Chem.
́
ez, R.;
́
Anderson, K. W.; Buchwald, S. L. J. Org. Chem. 2006, 71, 430.
(d) Buitrago Santanilla, A.; Regalado, E. L.; Pereira, T.; Shevlin, M.;
Bateman, K.; Campeau, L. C.; Schneeweis, J.; Berritt, S.; Shi, Z. C.;
Nantermet, P.; Liu, Y.; Helmy, R.; Welch, C. J.; Vachal, P.; Davies, I.
W.; Cernak, T.; Dreher, S. D. Science 2015, 347, 49.
(8) Other phosphazene superbases such as BEMP, P1tBu, and P2tBu
were also examined with inferior results to P2Et.
(9) Examples of room temperature Pd-catalyzed couplings of
nonactivated N-heterocycles are relatively rare in the literature.
(a) Stauffer, S. R.; Lee, S.; Stambuli, J. P.; Hauck, S. I.; Hartwig, J.
F. Org. Lett. 2000, 2, 1423. (b) Marion, N.; Navarro, O.; Mei, J.;
Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128,
4101. (c) Navarro, O.; Marion, N.; Mei, J.; Nolan, S. P. Chem.Eur. J.
2006, 12, 5142. (d) Ogata, T.; Hartwig, J. F. J. Am. Chem. Soc. 2008,
130, 13848. (e) Lundgren, R. J.; Peters, B. D.; Alsabeh, P. G.;
Stradiotto, M. Angew. Chem., Int. Ed. 2010, 49, 4071. (f) Cheung, C.
W.; Buchwald, S. L. Org. Lett. 2013, 15, 3998. (g) Cheung, C. W.;
D
Org. Lett. XXXX, XXX, XXX−XXX