660
O. Tamura et al.
LETTER
TBSO
N
H
H
References and Notes
H
H
N
NTs
R2
BF3·OEt2
NTs
(1) For pioneering works, see: (a) Oppolzer, W.; Keller, K.
Tetrahedron Lett. 1970, 1117. (b) Wildman, W. C.;
Slabaugh, M. R. J. Org. Chem. 1971, 36, 3202.
+
Me
O
NTs
NH
R1
O
R1
15a: R1 = Me, R2 = H
15b: R1 = H, R2 = Me
(2) For recent examples, see: (a) Abiko, A.; Liu, J.-F.; Wang,
G.; Masamune, S. Tetrahedron Lett. 1997, 38, 3261.
(b) Baskaran, S.; Aurich, H. G. Synlett 1998, 277.
(c) Sharma, G. V. M.; Srinivas, R. I.; Goverdhan, R. V.;
Rama, R. A. V. Tetrahedron: Asymmetry 1999, 10, 229.
(d) Falb, E.; Bechor, Y.; Nudelman, A.; Hassner, A.; Albeck,
A.; Gottlieb, H. E. J. Org. Chem. 1999, 64, 498.
(e) Dransfield, P. J.; Moutel, S.; Shipman, M.; Sik, V. J.
Chem. Soc., Perkin Trans. 1 1999, 3349. (f) Noguchi, M.;
Okada, H.; Tanaka, M.; Matsumoto, S.; Kakehi, A.;
Yamamoto, H. Bull. Chem. Soc. Jpn. 2001, 74, 917.
(g) Cheng, Q.; Zhang, W.; Tagami, Y.; Oritani, T. J. Chem.
Soc., Perkin Trans. 1 2001, 452. (h) Singh, S.; Ishar, M. P.
S.; Singh, G.; Singh, R. Can. J. Chem. 2005, 83, 260.
(3) For a theoretical study on oximenitrone isomerization, see:
Long, J. A.; Harris, N. J.; Lammertsma, K. J. Org. Chem.
2001, 66, 6762.
(4) (a) Grigg, R.; Thianpantagul, S. J. Chem. Soc., Perkin Trans.
1 1984, 653. (b) Shirai, M.; Kuwabara, H.; Matsumoto, S.;
Yamamoto, H.; Kakehi, A.; Noguchi, M. Tetrahedron 2003,
59, 4113.
(5) For related palladium-catalyzed cycloaddition of oximes,
see: Frederickson, M.; Grigg, R.; Thornton-Pett, M.;
Redpath, J. Tetrahedron Lett. 1997, 38, 7777.
16
17
Scheme 7
(11) Adachi, I.; Yamamori, T.; Hiramatsu, Y. Jpn. Patent, 50939,
1977.
(12) Preparation of Ethyl 2-[tert-Butyldimethylsilyl-
oxyimino]acetate (12): The mixture of ethyl 2-hydroxy-
iminoacetate (11;11 0.91 g, 7.8 mmol), tert-butylchloro-
dimethylsilane (1.77 g, 11.8 mmol), and imidazole (1.60 g,
23.5 mmol) in DMF (12 mL) was stirred at r.t. for 46 h. The
reaction mixture was poured into H2O and extracted with
Et2O. The combined organic phases were washed with brine
and dried with MgSO4. The solvent was removed by rotary
evaporation and the crude product was purified by column
chromatography on silica gel with hexane–Et2O (20:1) to
afford 12 (1.77 g, 98%) as a colorless oil. IR: 2934, 1749,
1728 cm–1. 1H NMR (300 MHz, CDCl3): d = 7.62 (s, 1 H),
4.30 (q, J = 7.1 Hz, 2 H), 1.33 (t, J = 7.1 Hz, 3 H), 0.95 (s, 9
H), 0.23 (s, 6 H). 13C NMR (75 MHz, CDCl3): d = 162.3,
146.1, 61.3, 25.7, 18.0, 14.0, –5.4. LRMS: m/z = 231.14.
HRMS (EI): m/z calcd for C10H21NO3Si: 231.1291; found:
231.1270.
(6) (a) Tamura, O.; Mitsuya, T.; Ishibashi, H. Chem. Commun.
2002, 1128. (b) Tamura, O.; Mitsuya, T.; Huang, X.;
Tsutsumi, Y.; Hattori, S.; Ishibashi, H. J. Org. Chem. 2005,
70, 10720.
(7) For a review on related N-metalloazomethine ylides, see:
Husineca, S.; Savic, V. Tetrahedron: Asymmetry 2005, 16,
2047.
(13) Typical Procedure for the Cycloaddition: To a solution of
12 (300 mg, 1.3 mmol) in DCE (10 mL) were added 7e (1.1
mL, 13 mmol) and BF3·OEt2 (310 mL, 2.9 mmol) at r.t., and
then the mixture was heated at 60 °C for 2 h. The reaction
was monitored by TLC. After cooling, the reaction mixture
was poured into sat. NaHCO3 solution and was extracted
with CHCl3. The combined organic layers were washed with
brine and dried with MgSO4. The residue was concentrated
under reduced pressure. The crude product was purified by
chromatography on silica gel with hexane–EtOAc (3:2) to
give two diastereomers, 14e (160 mg, 61%) and 14e¢ (47 mg,
18%) as light brown oils. 14e: IR (neat): 1733 cm–1. 1H NMR
(300 MHz, CDCl3): d = 5.90 (br s, 1 H), 4.23 (q, J = 7.1 Hz,
2 H), 4.12 (d, J = 7.5 Hz, 1 H), 2.73 (dd, J = 7.0, 14.5 Hz, 1
H), 1.82–1.72 (m, 4 H), 1.59–1.45 (m, 2 H), 1.40 (s, 3 H),
1.29 (t, J = 7.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3): d =
164.4, 95.5, 66.0, 61.1, 55.7, 39.5, 28.2, 26.4, 24.8, 14.2.
LRMS: m/z = 199. HRMS (EI): m/z calcd for C10H17NO3:
199.1208; found: 199.1187. 14e¢: 1H NMR (300 MHz,
CDCl3): d = 5.93 (br s, 1 H), 4.23 (q, J = 7.1 Hz, 2 H), 3.56
(d, J = 6.6 Hz, 1 H), 2.49 (br s, 1 H), 1.92–1.65 (m, 6 H),
1.45–1.32 (m, 3 H), 1.29 (t, J = 7.1 Hz, 3 H). 13C NMR (75
MHz, CDCl3): d = 171.3, 96.1, 70.2, 61.4, 59.5, 38.5, 32.2,
24.4, 23.5, 14.1.
(8) For related cycloaddition of acylhydrazones, see:
(a) Wilson, R. M.; Rekers, J. W. J. Am. Chem. Soc. 1979,
101, 4005. (b) Kobayashi, S.; Shimizu, H.; Yamashita, Y.;
Ishitani, H.; Kobayashi, J. J. Am. Chem. Soc. 2002, 124,
13678. (c) Kobayashi, S.; Hirabayashi, R.; Shimizu, H.;
Ishitani, H.; Yamashita, Y. Tetrahedron Lett. 2003, 44,
3351. (d) Yamashita, Y.; Kobayashi, S. J. Am. Chem. Soc.
2004, 126, 11279. (e) Shirakawa, S.; Lombardi, P. J.;
Leighton, J. L. J. Am. Chem. Soc. 2005, 127, 9974.
(9) For completion of the cycloaddition, 2 equiv of BF3·OEt2 are
essential. See ref. 6.
(10) During study on the intramolecular cycloaddition of N-
boranonitrone, we observed the tendency that electron-rich
carbon atom in the olefin attacks the nitrone-carbon. For
example, reaction of oxime 15a with BF3·OEt2 afforded
cycloadduct 16 bearing a bicyclo[3.3.0] system, whereas a
similar reaction of oxime 15b afforded cycloadduct 17
having a bicyclo[3.2.1] system (Scheme 7). See ref 6b.
(14) (a) Baldwin, S. W.; Long, A. Org. Lett. 2004, 6, 1653.
(b) Tamura, O.; Shiro, T.; Ogasawara, M.; Toyao, A.;
Ishibashi, H. J. Org. Chem. 2005, 70, 4569.
Synlett 2007, No. 4, 658–660 © Thieme Stuttgart · New York