12604
J. Am. Chem. Soc. 2000, 122, 12604-12605
The First Metalladiene of Group 14 Elements with a
Silole-Type Structure with SidGe and CdC Double
Bonds
Vladimir Ya. Lee, Masaaki Ichinohe, and Akira Sekiguchi*
Department of Chemistry, UniVersity of Tsukuba
Tsukuba, Ibaraki 305-8571, Japan
ReceiVed August 21, 2000
1,3-Butadiene derivatives and their cyclic analogues constitute
one of the most fundamental classes of conjugated organic
compounds. After the discovery of the stable metallenes and
dimetallenes of Group 14 elements,1 experimental efforts have
been focused on the synthesis of the Group 14 elements containing
metalladienes. However, only two examples of the isolable
metalladienes of Group 14 elements have been reported to date:
hexakis(2,4,6-triisopropylphenyl)tetrasila-1,3-butadiene and hexakis-
(2,4,6-triisopropylphenyl)tetragerma-1,3-butadiene.2 Theoretical
calculations on the model 2,3-digerma-1,3-butadiene, H2CdGeH-
GeHdCH2, have predicted about half the degree of conjugation
compared with that of 1,3-butadiene.3 We report here the
synthesis, full characterization, X-ray structure, and reactivity of
the first cyclic metalladiene consisting of Group 14 elements of
the type -MdM′-CdC- (M ) Si, M′ ) Ge). This compound
represents also the previously unknown metallole with an un-
symmetrically composed skeleton, as well as the first example
of the structurally characterized SidGe double bond. The reaction
mechanism to form the metalladiene and the question of conjuga-
tion of the two double bonds will also be described.
Figure 1. ORTEP drawing of 4a. Hydrogen atoms are omitted for clarity.
Selected bond lengths (Å): Ge(1)-Si(2) 2.250(1), Si(1)-Si(2)
2.364(1), Si(1)-C(2) 1.888(3), C(1)-C(2) 1.343(5), Ge(1)-C(1)
1.972(3), Si(1)-Si(3) 2.431(1), Si(1)-Si(4) 2.432(1), Si(2)-Si(5)
2.380(1), Ge(1)-Si(6) 2.418(1). Selected bond angles (deg): C(1)-Ge-
(1)-Si(2) 101.8(1), Ge(1)-Si(2)-Si(1) 95.2(0), C(2)-Si(1)-Si(2)
98.1(1), C(1)-C(2)-Si(1) 126.9(2), C(2)-C(1)-Ge(1) 117.9(2),
Si(3)-Si(1)-Si(4) 124.7(0).
Scheme 1
The reaction of tetrakis[di-tert-butyl(methyl)silyl]-2-disilager-
mirene (1a)4 with excess phenylacetylene in deuteriobenzene at
room temperature in 5 h cleanly afforded an orange-red reaction
mixture, which exhibits a downfield signal in the 29Si NMR at
+75.8 ppm. Recrystallization from hexane gave air- and moisture-
sensitive bright orange crystals of 1,1,2,3-tetrakis[di-tert-butyl-
(methyl)silyl]-4-phenyl-1,2-disila-3-germacyclopenta-2,4-diene 4a
(Scheme 1).5 The 29Si NMR spectrum revealed five resonances,
of which three belong to the silyl substituents (19.4, 26.6, and
30.1 ppm); the downfield signal at +75.8 ppm is attributable to
the double bonded silicon atom, and the upfield signal at -45.6
ppm corresponds to the endocyclic sp3 Si atom.
The molecular structure of compound 4a was established by
X-ray crystallography (Figure 1).6 The five-membered ring is
almost planar, although the SidGe double bond has a twisted
(trans-bent) configuration with a torsion angle Si(6)-Ge(1)-
Si(2)-Si(5) of 38.6(1)°. The phenyl ring is almost perpendicular
to the plane of the silole ring, which is usual for phenyl-substituted
metalloles.7 The SidGe double bond length is 2.250(1) Å, which
is intermediate between the typical values for SidSi and
GedGe double bond lengths.8 This value is close to that of the
theoretically predicted 2.180 Å (MP2) for 1a.4 It is instructive to
estimate the degree of conjugation of the two double bonds in
the silole ring system. The length of the Ge(1)-C(1) bond is
1.972(3) Å, which is in the normal range for Ge-C bond lengths
of 1.95-2.00 Å.9 For the Si(2)dGe(1) double bond length, it was
impossible to compare with other examples, since no previous
(1) For the recent reviews on metallenes and dimetallenes of Group 14
elements, see: (a) Weidenbruch, M. Eur. J. Inorg. Chem. 1999, 373. (b) Power,
P. P. Chem. ReV. 1999, 99, 3463. (c) Escudie´, J.; Ranaivonjatovo, H.; AdV.
Organomet. Chem. 1999, 44, 113.
(2) (a) Weidenbruch, M.; Willms, S.; Saak, W.; Henkel, G. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2503. (b) Scha¨fer, H.; Saak, W.; Weidenbruch, M.
Angew. Chem., Int. Ed. 2000, 39, 3703.
(3) Jouany, C.; Mathieu, S.; Chaubon-Deredempt, M. A.; Trinquier, G. J.
Am. Chem. Soc. 1994, 116, 3973.
(4) Lee, V. Ya.; Ichinohe, M.; Sekiguchi, A.; Takagi, N.; Nagase, S. J.
Am. Chem. Soc. 2000, 122, 9034.
(5) Spectral data for 4a: bright orange crystals; mp 161-163 °C; 1H NMR
(C6D6, δ) 0.37 (s, 6 H), 0.40 (s, 3 H), 0.59 (s, 3 H), 0.99 (s, 18 H), 1.15 (s,
18 H), 1.19 (s, 18 H), 1.31 (s, 18 H), 7.06-7.09 (m, 1 H, ArH), 7.19-7.24
(m, 2 H, ArH), 7.34 (s, 1 H, CdCH), 7.42 (dd, J1 ) 8.24 Hz, J2 ) 8.15 Hz,
2 H, ArH); 13C NMR (C6D6, δ) -2.9, -2.3 (3C), 22.1, 22.5, 23.2, 23.7, 29.9,
30.96, 31.12, 31.4, 126.3, 126.8, 128.6, 149.8 (CdCH), 151.7 (ipso C), 173.3
(CdCH); 29Si NMR (C6D6, δ) -45.6, 19.4, 26.6, 30.1, 75.8; MS (EI, 70 eV)
856-866 (M+ cluster, 31), 803 (M+ - tBu, 2), 703 (M+ - SiMetBu2, 4), 73
(100); UV/vis (hexane) λmax/nm (ꢀ) 243 (37330), 307 (6570), 472 (5540).
(6) Crystal data for 4a at 120 K: MF ) C44H90GeSi6, MW ) 860.29,
triclinic, P1h, a ) 12.2070(8) Å, b ) 13.214(1) Å, c ) 18.815(1) Å, R )
74.551(4)°, â ) 73.514(5)°, γ ) 64.841(5)°, V ) 2596.7(4) Å3, Z ) 2, Dcalcd
) 1.100 g‚cm-3. The final R factor was 0.0562 for 7813 reflections with Io >
2σ(Io) (Rw ) 0.1277 for all data, 10815 reflections), GOF ) 1.015.
(7) For the reviews on metalloles chemistry, see: (a) Dubac, J.; Laporterie,
A.; Manuel, G. Chem. ReV. 1990, 90, 215. (b) Colomer, E.; Corriu, R. J. P.;
Lheureux, M. Chem. ReV. 1990, 90, 265. (c) Dubac, J.; Gue´rin, C.; Meunier,
P. The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig,
Y., Eds.; John Wiley & Sons Ltd.: New York, 1998; Vol. 2, Part 3, Chapter
34.
(8) Typical values for a SidSi double bond length range from 2.138 to
2.289 Å, whereas GedGe double bond lengths lie in the region of 2.213-
2.460 Å: see, for example, ref 1b and the following: Schmedake, T. A.;
Haaf, M.; Apeloig, Y.; Mu¨ller, T.; Bukalov, S.; West, R. J. Am. Chem. Soc.
1999, 121, 9479.
(9) Baines, K. M.; Stibbs, W. Coord. Chem. ReV. 1995, 145, 157.
10.1021/ja0030921 CCC: $19.00 © 2000 American Chemical Society
Published on Web 12/01/2000