Angewandte Chemie International Edition
10.1002/anie.201915040
RESEARCH ARTICLE
[
14] a) T. R. Cook, P. J. Stang, Chem. Rev. 2015, 115, 7001-7045; b) C. J.
Conclusion
Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem. Rev. 2015,
115, 3012−3035.
In summary, a cofactor-substrate-based supramolecular
[15] L. J. Jongkind, X. Caumes, A. P. T. Hartendorp, J. N. H. Reek, Acc.
Chem. Res. 2018, 51, 2115−2128.
luminescent probe, Zn-MPB⊃L-NO
detection and bio-tracking of hypoxic NTR was constructed by
encapsulating a substrate-based fluorescent probe L-NO within
the NADH mimic-containing metal-organic capsule Zn-MPB. Zn-
MPB⊃L-NO forced the NADH mimic capsule into proximity with
L-NO , facilitated a unique NADH-independent NTR's detection,
2
, for the ultrafast quantitative
[
16] a) K. K. Yan, M. Fujita, Science 2015, 350, 1165-1166; b) S. T. Bai, C.
B. Bheeter, J. N. H. Reek, Angew. Chem. Int. Ed. 2019, 58, 2696-2699.
17] W. C. Geng, S. Y. Jia, Z. Zheng, Z. H. Li, D. Ding, D. S. Guo, Angew.
Chem. Int. Ed. 2019, 58, 2377-2381.
2
[
[18] W. Cullen, M. C. Misuraca, C. A. Hunter, N. H. Williams, M. D. Ward,
2
Nat. Chem. 2016, 8, 231–236.
2
[
19] a) X. D. Wang, H. H. P. Yiu, ACS Catal. 2016, 6, 1880−1886; b) D. V.
Titov, V. Cracan, R. P. Goodman, J. Peng, Z. Grabarek, V. K. Mootha,
Science 2016, 352, 231-235.
enabling the enzyme catalysis to switch from the original
complex double-substrate process to a single-substrate one.
The new signalling communication method ensures a linear
relationship between NTR content and fluorescence intensity
with an ultrafast equilibrium of seconds in solution detection, It
guarantees the biotracing of NTR in cells and mice more quickly
than the traditional probes, demonstrating the superiority of this
approach over traditional methods in NTR imaging and early
tumor diagnosis. The advantage of the cofactor-substrate-based
supramolecular luminescent probe for fusion of cofactor and
luminescent substrate endows a new and promising method in
bioimaging and biomimetic catalysis.
[20] a) A, Chevalier, Y, M. Zhang, O, M. Khdour, J. B. Kaye, S. M. Hecht, J.
Am. Chem. Soc. 2016, 138, 12009-12012; b) Y. H. Li, Y. Sun, J. C. Li,
Q. Q. Su, W. Yuan, Y. Dai, C. M. Han, Q. H. Wang, W. Feng, F. Y. Li, J.
Am. Chem. Soc. 2015, 137, 6407−6416.
[21] Z. Thiel, P. Rivera-Fuentes, Angew. Chem. Int. Ed. 2019, 58, 11474-
11478.
[22] Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, F. D. Toste,
Nat. Chem. 2013, 5, 100-103.
[23] J. M. Han, M. Xu, B. Wang, N. Wu, X. M. Yang, H. R. Yang, B. J. Salter,
L. Zang, J. Am. Chem. Soc. 2014, 136, 5090-5096.
[24] J. Rodríguez, J. Mosquera, J. R. Couceiro, J. R. Nitschke, M. E.
Vázquez, J. L. Mascareñas, J. Am. Chem. Soc. 2017, 139, 55−58.
[25] N. Hannink, S. J. Rosser, C. E. French, A. Basran, J. A. H. Murray, S.
Nicklin, N. C. Bruce, Nat. Biotechnol. 2001, 19, 1168-1172.
Acknowledgements
[26] M. M. Zhang, M. L. Saha, M. Wang, Z. X. Zhou, B. Song, C. J. Lu, X. Z.
Yan, X. P. Li, F. H. Huang, S. C. Yin, P. J. Stang, J. Am. Chem. Soc.
2017, 139, 5067-5074.
This research was financially supported by the NSFC (No
[
[
27] P. J. Altmann, A. Pöthig, J. Am. Chem. Soc. 2016, 138, 13171−13174.
28] R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev. 2011, 111, 7941-
2
1820102001 and 21977015). We acknowledge Associate
Professor Jiqiu Yin (from Dalian Medical University) for the aid of
small animal experiments.
7980.
[29] Y. C. Liu, L. L. Teng, L. L. Chen, H. C. Ma, H. W. Liu, X. B. Zhang,
Chem. Sci. 2018, 9, 5347-5353.
[
30] T. L. Grove, J. S. Benner, M. I. Radle, J. H. Ahlum, B. J. Landgraf, C.
Keywords: Metal-organic capsule • Supramolecular probe •
Krebs, S. J. Booker, Science 2011, 332, 604-607.
Cofactor mimic • Hypoxia enzyme • Ultrafast detection
[31] F. Wong, A. Dutta, D. Chowdhury, J. Gunawardena, P.N.A.S. 2018,
15, 9738–9743.
1
[
32] a) M. Rabe, S. R. Tabaei, H. Zetterberg, V. P. Zhdanov, F. Hook,
Angew. Chem. Int. Ed. 2015, 54, 1022-1026; b) S. Bhakta, A. Nayek, B.
Roy, A. Dey, Inorg. Chem. 2019, 58, 2954-2964.
[
1]
2]
D. M. Gilkes, G. L. Semenza, D. Wirtz, Nat. Rev. Cancer 2014, 14, 430-
39.
4
[
a) A. T. Henze, M. Mazzone, J. Clin. Invest. 2016, 126, 3672-3679; b) L.
Y. Ye, W. Chen, X. L. Bai, X. Y. Xu, Q. Zhang, X. F. Xia, X. Sun, G. G.
Li, Q. D. Hu, Q. H. Fu, T. B. Liang, Cancer Res. 2016, 76, 818-830.
a) H. Choudhry, A. L. Harris, Cell Metab. 2018, 27, 281-298; b) G. Z.
Qiu, M. Z. Jin, J. X. Dai, W. Sun, J. H. Feng, W. L. Jin, Trends
Pharmacol. Sci. 2017, 38, 669-686.
a) S. C. Yang, Z. H. Tang, C. Y. Hu, D. W. Zhang, N. Shen, H. Y. Yu, X.
S. Chen, Adv. Mater. 2019, 31, 1805955; b) L. J. O'Connor, C.
Cazares-Körner, J. Saha, C. N. G. Evans, M. R. L. Stratford, E. M.
Hammond, S. J. Conway, Nat. Protoc. 2016, 11, 781-794.
a) J. N. Liu, W. B. Bu, J. L. Shi, Chem. Rev. 2017, 117, 6160-6224; b)
H. W. Liu, L. L. Chen, C. Y. Xu, Z. Li, H. Y.Zhang, X. B. Zhang, W. H.
Tan, Chem. Soc. Rev. 2018, 47, 7140-7180.
a) H. J. Knox, J. Hedhli, T. W. Kim, K. Khalili, L. W. Dobrucki, J. Chan,
Nat. Commun. 2017, 8, 1794; b) W. Piao, K. Hanaoka, T. Fujisawa, S.
Takeuchi, T. Komatsu, T. Ueno, T. Terai, T. Tahara, T. Nagano, Y.
Urano, J. Am. Chem. Soc. 2017, 139, 13713-13719.
[33] X. J. Liu, Q. L. Feng, A. Bachhuka, K. Vasilev, ACS Appl. Mater.
Interfaces 2014, 6, 9733−9741.
[
34] a) W. Piao, S. Tsuda, Y. Tanaka, S. Maeda, F. Y. Liu, S. Takahashi, Y.
Kushida, T. Komatsu, T. Ueno, T. Terai, T. Nakazawa, M. Uchiyama, K.
Morokuma, T. Nagano, K. Hanaoka, Angew. Chem. Int. Ed. 2013, 52,
[
3]
4]
13028-13032; b) M. Batie, J. Frost, M. Frost, J. W. Wilson, P. Schofield,
[
S. Rocha, Science 2019, 363, 1222-1226.
[35] X. C. Zheng, H. Mao, D. Huo, W. Wu, B. R. Liu, X. Q. Jiang, Nat.
Biomed. Eng. 2017, 1, 0057.
[36] a) Y. Yuan, G. Hilliard, T. Ferguson, D. E. Millhorn, J. Biol. Chem. 2003,
[
5]
6]
278, 15911-15916; b) Y. Yuan, D. Beitner-Johnson, D. E.Millhorn,
Biochem. Bioph. Res. Co. 2001, 288, 849–854.
[
37] a) Z. Q. Xu, X. T. Huang, X. Han, D. Wu, B. B. Zhang, Y. Tan, M. J.
Cao, S. H. Liu, J. Yin, J. Yoon, Chem 2018, 4, 1609-1628; b) V. E.
Zwicker, B. L. Oliveira, J. H. Yeo, S. T. Fraser, G. J. L. Bernardes, E. J.
New, K. A. Jolliffe, Angew. Chem. Int. Ed. 2019, 58, 3087-3091.
38] J. B. Grimm, A. K. Muthusamy, Y. J. Liang, T. A. Brown, W. C. Lemon,
R. Patel, R. W. Lu, J. J. Macklin, P. J. Keller, N. Ji, L. D. Lavis, Nat.
Methods 2017, 14, 987-994.
[
[
[
[
7]
8]
X. H. Zhu, M. Lu, B. Y. Lee, K. Ugurbil, W. Chen, P.N.A.S. 2015, 112,
2876–2881.
[
a) Y. P. Wang, K. Y. San, G. N. Bennett, Curr. Opin. Biotech. 2013, 24,
39] a) W. W. An, L. S. Ryan, A. G. Reeves, K. J. Bruemmer, L. Mouhaffel, J.
L. Gerberich, A. Winters, R. P. Mason, A. R. Lippert, Angew. Chem. Int.
Ed. 2019, 58, 1361-1365; b) S. Son, M. Won, O. Green, N. Hananya, A.
Sharma, Y. Jeon, J. H. Kwak, J. L. Sessler, D. Shabat, J. S. Kim,
Angew. Chem. Int. Ed. 2019, 58, 1739-1743.
994-999; b) C. K. Prier, F. H. Arnold, J. Am. Chem. Soc. 2015, 137,
13992−14006.
[9]
M. Richter, Nat. Prod. Rep. 2013, 30, 1324-1345.
[10] M. H. Lee, A. Sharma, M. J. Chang, J. Lee, S. Son, J. L. Sessler, C.
Kang, J. S. Kim, Chem. Soc. Rev. 2018, 47, 28-52.
[
40] a) K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, C. J. Chang, Angew.
Chem. Int. Ed. 2018, 57, 7508-7512; b) A. D. Shao, Y. S. Xie, S. J. Zhu,
Z. Q. Guo, S. Q. Zhu, J. Guo, P. Shi, T. D. James, H. Tian, W. H. Zhu,
Angew. Chem. Int. Ed. 2015, 54, 7275-7280.
[
[
11] A. Kaur, E. J. New, Acc.Chem.Res. 2019, 52, 623−632.
12] W. W. Chen, E. Freinkman, T. Wang, K. Birsoy, D. M. Sabatini, Cell
2016, 166, 1324–1337.
[13] P. R. Race, A. L. Lovering, R. M. Green, A. Ossor, S. A. White, P. F.
Searle, C. J. Wrighton, E. I. Hyde, J. Biol. Chem. 2005, 280, 13256-
13264.
This article is protected by copyright. All rights reserved.