A.Gavrila et al./ Tetrahedron Letters 46 (2005) 6205–6207
6207
Table 2 (continued)
4. Lopez, J. C.;Alonso, R.;Fraser-Reid, B. J.Am.Chem.
Soc. 1989, 111, 6471–6473.
5. Yeung, W. A.;Alonso, R.;Vite, G. D.;Fraser-Reid, B. J.
Carbohydr.Chem. 1989, 3, 413–427.
Entry Yield of nitrate Nitrate ester
estera (%)
6. Begley, M. J.;Fletcher, R. J.;Murphy, J. A.;Sherburn, M.
O
O
O
O2NO
S. J.Chem.Soc,. Chem.Commun.
1993, 1723–1725.
7. Hussain, N.;Morgan, D. O.;White, C. R.;Murphy, J. A.
8
89
80
82
O
Tetrahedron Lett. 1994, 35, 5069–5072.
O
´
´
8. Francisco, C. G.;Leo n, E. I.;Martı n, A.;Moreno, P.;
´
´
Rodrıgez, M. S.;Sua rez, E. J.Org.Chem. 2001, 66, 6967–
O
O
6976.
O
9. Robins, M. J.;Guo, Z.;Samano, M. C.;Wnuk, S. F.
Am.Chem.Soc. 1999, 121, 1425–1433.
10. Easton, C. J.;Ivory, A. J.;Smith, C. A. J.Chem.Soc,.
Perkin Trans.2 1997, 503–507.
J.
O
9
O
O2NO
11. Headlam, H. A.;Mortimer, A.;Easton, C. J.;Davies, M.
J. Chem.Res.Toxicol. 2000, 13, 1087–1095.
12. Ricci, M.;Madariaga, L.;Skrydstrup, T. Angew.Chem,.
Int.Ed. 2000, 39, 242–245.
13. Ricci, M.;Blakskjær, P.;Skrydstrup, T. J.Am.Chem.Soc.
2000, 122, 12413–12421.
14. Blakskjær, P.;Gavrila, A.;Andersen, L.;Skrydstrup, T.
Tetrahedron Lett. 2004, 45, 9091–9094.
15. Boschan, R.;Merrow, R. T.;van Dolah, R. W. Chem.
Rev. 1955, 55, 485–510.
16. Campbell, R. D.;Behr, F. E. J.Org.Chem. 1973, 38,
1183–1186.
H
H
H
10
H
H
H
O2NO
O2NO
CO2tBu
H
H
11
65b
O2NO
H
17. Coombes, R. G. In Comprehensive Organic Chemistry:
The Synthesis and Reactions of Organic Compounds;
Barton, D. H. R., Ollis, W. D., Eds.;Pergamon Press:
Oxford, 1979;Vol. 2, pp 360–363.
a Isolated yield after recrystallization.
b 4 equiv of the nitration reagents used.
18. Olah, G. A.;Wang, Q.;Li, X.;Surya Prakash, G. K.
Synthesis 1993, 207–208.
also possible providing the corresponding dinitrate
diester in 65% yield (entry 11).
19. Other two-step procedures are also known such as alcohol
to sulfonate transformation followed by substitution with
a nitrate salt (Ref. 3), or generation of a chloroformate
followed by treatment with silver nitrate (Ref. 18).
20. General procedure for the nitration of alcohols: Trifluoro-
acetic anhydride (2.0 mmol) was added to a solution of
LiNO3 (2.0 mmol) in dry acetonitrile (5 mL) at 20 °C. The
mixture was stirred until complete dissolvation of LiNO3
(approx 30 min) and the solution was then cooled to 0 °C.
Sodium carbonate (2.0 mmol) and the alcohol (1.0 mmol)
were then added and the reaction mixture was stirred for
5–7 h. The reaction mixture was poured into an ice-cold
solution of saturated NaHCO3. Extraction with CH2Cl2
followed by drying and evaporation under reduced
pressure afforded the nitrate ester, which was purified by
recrystallization from EtOAc/hexane. Column chroma-
tography with the same solvent system led to reduced
yields for the peptide nitrates.
In conclusion, we have developed an alternative
approach for the nitration of alcohols under mild condi-
tions via a mixed anhydride generated from LiNO3/
(CF3CO)2O. Further work is in progress to test the com-
pabtibility of this approach with longer peptides, as well
as cyclic peptides and to examine the ability of these
nitrates to undergo reduction upon subjection to samar-
ium diiodide. This work will be reported in due course.
Acknowledgements
Generous financial support from the Danish Natural
Science Research Council, The Marie Curie Training
Program and the University of Aarhus, is gratefully
acknowledged.
21. Data for compound 2: 1H NMR (CDCl3, 400 MHz): d
(ppm) 7.38–7.15 (m, 10H), 6.77 (br s, 1H), 5.24 (br s, 1H),
5.10 (d, 1H, J = 10.0 Hz), 5.07 (d, 1H, J = 9.0 Hz), 4.83
(m, 1H), 4.76 (br d, 1H, J = 11.3 Hz), 4.69 (dd, 1H,
J = 11.3, 3.9 Hz), 4.49 (m, 1H), 3.76 (s, 3H), 3.13 (dd, 1H,
J = 14.0, 6.8 Hz), 3.07 (dd, 1H, J = 13.7, 6.6 Hz). 13C
NMR (CDCl3, 125 MHz): d (ppm) 171.4, 168.4, 156.2,
136.2, 136.0, 129.4, 129.2 (2C), 129.1, 129.0, 128.7, 128.5,
128.3, 127.4, 71.1, 67.5, 56.2, 53.4, 50.8, 38.2. ES-HRMS
C21H23N3O8 [M+Na+]: Calculated: 468.1383, found:
468.1391.
References and notes
1. Binkley, R. W.;Koholic, D. J. J.Org.Chem. 1979, 44,
2047–2048.
2. Binkley, R. W.;Koholic, D. J. J.Carbohydr.Chem. 1984,
3, 85–106.
3. Tam, T. F.;Fraser-Reid, B. J.Chem.So,c. Chem.
Commun. 1984, 1122–1123.