2
58
A. Marchal et al.
LETTER
products. It allows the preparation on a multigram scale of
the amino-dialkoxypyrimidines 2, which can find signifi-
cant application as synthetic intermediates in the prepara-
tion of binuclear fused pyrimidines of potential biological
interest.
A.; Tartakovsky, V. A. Eur. J. Org. Chem. 1999, 29; On the
other hand, all the 6-amino-5-nitroso-pyrimidine derivatives
show a strong intramolecular hydrogen bonding between the
5-nitroso oxygen atom and the neighbor 6-NH hydrogen,
which blocks the free rotation of the nitroso group and
results in a large downfield shifting for the 4(6)-NH proton
NMR signals (10–13 ppm in DMSO).
6
(
11) Compound 1d was obtained by selective O -alkylation of 6-
Acknowledgement
amino-2-methoxypyrimidin-4(3H)-one under Mitsunobu
conditions (i-PrOH/DEAD/Ph P) in acetonitrile; 1e was
prepared by treatment of 6-amino-2-methoxypyrimidin-
The authors acknowledge „Consejería de Educación y Ciencia de la
Junta de Andalucía“ for a research grant to A. Marchal and for fi-
nancial support, and Mr. Oscar del Pico for technical assistance.
3
4(3H)-one with benzyl chloride and potassium carbonate in
DMSO; 1f and 1g were prepared by nucleophilic
substitution with sodium benzylate in benzyl alcohol from 4-
amino-2,6-dichloropyrimidine and 2-amino-4,6-
dichloropyrimidine, respectively.
References and Notes
(
1) (a) Shaw, G. In Comprehensive Heterocyclic Chemistry,
Vol. 5; Potts, K. T.; Katritzky, A. R.; Rees, C. W., Eds.;
Pergamon Press: Oxford, 1984, 499. (b) Pfleiderer, W. In
Comprehensive Heterocyclic Chemistry II, Vol. 7;
(
12) (a) Brown, D. J. The Pyrimidines, In The Chemistry of
Heterocyclic Compounds, Vol. 52; Taylor, E. C.;
Weissberger, A., Eds.; John Wiley & Sons: New York, 1994,
305–306. (b) Brown, D. J. The Pyrimidines, In The
Ramsdem, D. A.; Katritzky, A. R.; Rees, C. W.; Scriven, E.
F. W., Eds.; Pergamon Press: Oxford, 1996, 679.
Chemistry of Heterocyclic Compounds, Suppl. I; Taylor, E.
C.; Weissberger, A., Eds.; John Wiley & Sons: New York,
(c) Melguizo, M.; Nogueras, M.; Sánchez, A. J. Org. Chem.
1970, 102–103. (c) Brown, D. J. The Pyrimidines, In The
1992, 57, 559.
Chemistry of Heterocyclic Compounds, Suppl. II; Taylor, E.
C.; Weissberger, A., Eds.; John Wiley & Sons: New York,
(
2) Arris, C. E.; Boyle, F. T.; Calvert, A. H.; Curtin, N. J.;
Endicott, J. A.; Garman, E. F.; Gibson, A. E.; Golding, B. T.;
Grant, S.; Griffin, R. J.; Dewsbury, P.; Johnson, L. N.;
Lawrie, A. M.; Newell, D. R.; Noble, M. E. M.; Sausville, E.
A.; Schultz, R.; Yu, W. J. Med. Chem. 2000, 43, 2797.
3) (a) Chae, M.-Y.; Swenn, K.; Kanugula, S.; Dolan, M.; Pegg,
A. E.; Moschel, R. C. J. Med. Chem. 1995, 38, 359.
1
985, 147–150.
13) (a) Compound 1h was obtained by treatment of 2-amino-
,6-dimethoxypyrimidine (1b) with benzyl chloride and
(
4
potassium hydroxide in toluene at 80 ºC. Compound 1i was
prepared by treatment of 6-amino-2-methylthiopyrimidin-
(
(
4
(3H)-one with dimethyl sulfate/NaOH according to:
Johns, C. O.; Hendrix, B. M. J. Biol. Chem. 1951, 20, 153.
b) Compound 1j was obtained by Raney-nickel
(b) Terashima, I.; Kohda, K. J. Med. Chem. 1998, 41, 503.
4) (a) Gray, N.; Detivaud, L.; Doerig, D.; Meijer, L. Curr. Med.
Chem. 1999, 6, 859. (b) Walker, D. H. Curr. Top.
Microbiol. Immunol. 1998, 227, 149. (c) Garrett, M. D.;
Fattaey, A. Curr. Opin. Genet. Dev. 1999, 9, 104.
5) Melguizo, M.; Marchal, A.; Nogueras, M.; Sánchez, A.;
Low, J. “Aminolysis of Methoxy Groups in Pyrimidine
Derivatives. Activation by 5-Nitroso Group”, J. Heterocycl.
Chem. in press.
(
desulfurization from pyrimidine 1i according to: Pfleiderer,
W.; Liedek, E. Ann. 1958, 612, 163.
(
(
14) (a) Lythgoe, B.; Todd, A. R.; Topham, A. J. Chem. Soc.
(
1944, 315. (b) Evans, R. M.; Jones, P. G.; Palmer, P. J.;
Stephens, E. F. J. Chem. Soc. 1956, 4106.
15) Zvilichovsky, G.; Feingers, J. J. Chem. Soc., Perkin Trans. 1
1976, 1507.
(
(
(
6) Ritzmann, G.; Ienaga, K.; Kiriasis, L.; Pfleiderer, W. Chem.
Ber.; 1980, 113, 1535.
7) Moodie, R. B.; O’Sullivan, B. J. Chem. Soc., Perkin Trans.
(
(
(
(
16) Pfleiderer, W. Chem. Ber. 1957, 90, 2272.
17) Schreider, H.-J.; Pfleiderer, W. Chem. Ber. 1974, 107, 3377.
18) Engelmann, M. Ber. Dtsch. Chem. Ges. 1909, 42, 177.
19) Sánchez, A.; Nogueras, M.; López, R.; Gutiérrez, M.;
Colacio, E. Thermochim. Acta 1988, 91, 173.
1995, 2, 205.
8) Compound 1a was obtained by treatment of 2,4,6-
trichloropyrimidine with sodium methoxide according to:
(
20) Nogueras, M.; López, R.; Gutiérrez, M. D. Sánchez, A. J.
(
(
a) Fox, J. J.; Shugar, D. Bull. Soc. Chim. Belg. 1952, 61, 44.
b) 1b was purchased from Adrich. 1c was prepared by
Therm. Anal. 1988, 34, 1335.
21) The 1H and 13C NMR signals of the newly formed species
(
treatment of 4-amino-2,6-dichloropyrimidine with sodium
methoxide according to: Bretschneider, H.; Klötzer, W.;
Spiteller, G. Monatsh. Chem. 1961, 92, 128.
coincided with those of an original sample of isoamyl
alcohol. On the other hand, the broad signal at 3.69 ppm
assigned to H O traces present in DMSO-d moved to 5.70
2
6
(
9) When the reaction was performed under the same conditions
but in the presence of a catalytic amount of acetic or
trifluoroacetic acid, a complex mixture of colored
compounds, synthetically useless, was obtained.
ppm (broad signal) assigned to the alcohol exchangeable
proton.
(
22) A study on the nucleophilic substitution of methoxide
groups of compounds 2 by different amines is currently
under preparation in our laboratory and will be the subject of
another report in near future. The easy substitution by the
bulky 1-adamantylamino group is here anticipated in order
to illustrate the synthetic potential of the products prepared
by the nitrosation procedure described here.
23) Low, J. N.; Marchal, A.; Nogueras, M.; Melguizo, M.;
Sánchez, A. Acta Crystallogr. 2001, C57, 178.
24) Melguizo, M.; Nogueras, M.; Sánchez, A. Synthesis 1992,
(
10) All the new prepared compounds were fully characterized by
1
13
spectroscopic methods (IR, UV/Vis, MS, H and C NMR)
and elemental analysis (C 0.3, H 0.3, N 0.4%). A
relevant feature of the 2-amino-4,6-dialkoxy-5-nitroso-
1
3
pyrimidines 2b,g,h is the particularly broad C NMR signal
= 161–164 ppm in DMSO) for carbons C(4) and C(6) as
(
(
(
a consequence of the free rotation of the nitroso group that
makes these carbon atoms chemically equivalent. A similar
observation on benzene nitroso derivatives can be found in:
Lipilin, D. L.; Churakov, A. M.; Ioffe, S. L.; Strelenko, Y.
491.
Synlett 2002, No. 2, 255–258 ISSN 0936-5214 © Thieme Stuttgart · New York