10.1002/asia.201901068
Chemistry - An Asian Journal
FULL PAPER
Res. 2016, 25, 173-210; f) J. A. Joule, Adv. Het. Chem. 2016, 119, 81-
106; g) Z. Hosseinzadeh, A. Ramazani, N. Razzaghi-Asl, Curr. Org.
Chem. 2018, 22, 2256-2279; h) M. Badolato, F. Aiello, N. Neamati,
RSC Adv. 2018, 8, 20894-20921; i) K. Walayat, N.-A. Mohsin, S. Aslam,
M. Ahmad, Turk. J. Chem. 2019, 43, 1-23;
group. This in effect accords high level of regioselectivity to the
reaction, affording products as a single regioisomer.
Conclusions
[2]
a) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv.
2015, 5, 15233-15266; b) Nisha, K. Kumar, V. Kumar, RSC Adv. 2015,
5, 10899-10920; c) R. Khajuria, S. Dham, K. K. Kapoor, RSC Adv. 2016,
6, 37039-37066; d) M. Krzeszewski, D. Gryko, D. T. Gryko, Acc. Chem.
Res. 2017, 50, 2334-2345; e) G. I. Vargas-Zuniga, J. L. Sessler, Coord.
Chem. Rev. 2017, 345, 281-296; f) M. J. F. Calvete, S. M. A. Pinto, M.
M. Pereira, C. F. G. C. Geraldes, Coord. Chem. Rev. 2017, 333, 82-
107; g) M. J. F. Calvete, S. M. Pinto, Curr. Org. Syn. 2017, 14, 704-
714; h) S. Ahmad, O. Alam, M. J. Naim, M. Shaquiquzzaman, M. M.
Alam, M. Iqbal, Eur. J. Med. Chem. 2018, 157, 527-561; i) C. Wu, W.
Wang, L. Fang, W. Su, Chin. Chem. Lett. 2018, 29, 1105-1112; j) J.
Hatai, C. Schmuck, Acc. Chem. Res. 2019, 52, 1709-1720; k) F. Hu, J.
P. L. Ng, P. Chiu, Synthesis 2019, 51, 1073-1086; l) Z. Yu, G. N.
Pandian, T. Hidaka, H. Sugiyama, Adv. Drug Del. Rev. 2019, AOP.
a) F. J. Leeper, J. M. Kelly, Org. Prep. Proced. Int. 2013, 45, 171-210;
b) V. Estevez, M. Villacampa, J. C. Menendez, Chem. Soc. Rev. 2014,
43, 4633-4657; c) B. Quiclet-Sire, S. Z. Zard, Synlett 2017, 28, 2685-
2696; d) T. Fujita, J. Ichikawa, Heterocycles 2017, 95, 694-714; e) A.
Sharma, P. Piplani, J. Het. Chem. 2017, 54, 27-34; f) Z. Ma, Z. Ma, D.
Zhang, Molecules 2018, 23, 2666/1-2666/19; g) I. Azad, F. Hassan, M.
Saquib, N. Ahmad, R. K. Abdul, A.G. Al-Sehemi, M. Nasibullah, Orient.
J. Chem. 2018, 34, 1670-1700; h) M. Leonardi, V. Estevez, M.
Villacampa, J. C. Menendez, Synthesis 2019, 51, 816-828;
In conclusion, an efficient regioselective synthesis of
trisubstituted pyrroles has been developed using simple
substrates and organic dye as photocatalyst under visible light
irradiation. The reaction is reasonably general in nature in terms
of 2H-azirines and nitroalkenes employed in the reaction.
Further, the complete regioselectivity of the reaction and high
yields of product in most of the cases are noteworthy attributes
of the reaction.
Experimental Section
General procedure for visible light mediated trisubstituted
pyrrole 3 synthesis
[3]
In a 5 mL snap vial equipped with magnetic stirring bar, the 2H-
azirine 1 (0.4 mmol), nitroalkene 2 (0.2 mmol) and photocatalyst
-
(Mes-Acr+BF4 ) PC-I (3 mg, 0.006 mmol, 3 mol% w.r.t. 2) were
dissolved in anhydrous dichloromethane (4 mL). The resulting
reaction mixture was degassed by three “freeze-pump-thaw”
cycles via a syringe needle. The vial was irradiated using 450
nm blue LED with a cooling device maintaining a temperature
around 25 °C. After 16 h of irradiation (TLC monitoring), the light
source was removed and DBU (0.06 mL, 0.4 mmol) was added
in the reaction mixture which was stirred at room temperature for
additional 2 h (TLC monitoring). The reaction mixture was
washed with water (2 x 5 mL) and brine (2 x 5 mL). The
combined organic layer was dried (Na2SO4) and concentrated
under reduced pressure. Purification of the crude product was
achieved by column chromatograpy on silica gel using
hexane/ethyl acetate as eluent to afford the pure product 3.
[4]
a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322-5363; b) D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355-
360; c) R. A. Angnes, Z. Li, C. R. D. Correia, G. B. Hammond, Org.
Biomol. Chem. 2015, 13, 9152-9167; d) N. A. Romero, D. A. Nicewicz,
Chem. Rev. 2016, 116, 10075-10166; e) D. C. Fabry, M. Rueping, Acc.
Chem. Res. 2016, 49, 1969-1979; f) D. Staveness, I. Bosque, C. R. J.
Stephenson, Acc. Chem. Res. 2016, 49, 2295-2306; g) L. Revathi, L.
Ravindar, W.-Y. Fang, K. P. Rakesh, H.-L. Qina, Adv. Syn. Catal. 2018,
360, 4652-4698; h) F. Strieth-Kalthoff, M.l J. James, M. Teders, L.
Pitzer, F. Glorius, Chem. Soc. Rev. 2018, 47, 7190-7202; i) M. K.
Bogdos, E. Pinard, J. A. Murphy, Beil. J. Org. Chem. 2018, 14, 2035-
2064; j) A. Savateev, M. Antonietti, ACS Catal. 2018, 8, 9790-9808; k)
S. Angerani, N. Winssinger, Chem. Eur. J. 2019, 25, 6661-6672;
a) R. A. Rossi, J. I. Bardagi, M. E. Buden, Curr. Org. Synth. 2017, 14,
398-429; b) T. Glasnov, Top. Heterocycl. Chem. 2018, 56, 103-132; c)
M. Borjesson, A. Tortajada, R. Martin, Chem. 2019, 5, 254-256; d) B. M.
Hockin, C. Li, N. Robertson, E. Zysman-Colman, Catal. Sci. Tech. 2019,
9, 889-915; e) A. A. Festa, L. G. Voskressensky, E. V. Van der Eycken,
Chem. Soc. Rev. 2019, AOP.
[5]
Acknowledgements
BSK and LD thank UGC, New Delhi and CSIR, New Delhi,
respectively for the Ph. D. fellowships. AP thank DST, New Delhi
for project fellowship. We thank the SAIF division of CSIR-CDRI
for the analytical support. We gratefully acknowledge the X-ray
diffraction facility of Indian Institute of Technology, Kanpur for X-
ray data collection of 3r. We also acknowledge Department of
Science & Technology (DST), New Delhi for the financial
support (Project Ref. No.: EMR/2016/006975). CDRI
Communication No: 9896
[6]
[7]
[8]
[9]
J. Xuan, X.-D. Xia, T.-T. Zeng, Z.-J. Feng, J.-R. Chen, L.-Q. Lu, W.-J.
Xiao, Angew. Chem. Int. Ed. 2014, 53, 5653-5656.
T.-T. Zeng, J. Xuan, W. Ding, K. Wang, L.-Q. Lu, W.-J. Xiao, Org. Lett. 2015, 17,
4070-4073.
J. O. Mueller, F. G. Schmidt, J. P. Blinco, C. Barner-Kowollik, Angew. Chem. Int.
Ed. 2015, 54, 10284-10288.
H. Wang, Y. Ren, K. Wang, Y. Man, Y. Xiang, N. Li, B. Tang, Chem. Commun.
2017, 53, 9644-9647.
[10] B.-G. Cai, Z.-L. Chen, G.-Y. Xu, J. Xuan, W.-J. Xiao, Org. Lett. 2019, 21, 4234-
4238.
Keywords: 2H-azirines • nitroalkenes • [3+2]cycloaddition •
visible-light • trisubstituted-pyrroles
[11] L. Chen, H. Li, P. Li, L. Wang, Org. Lett. 2016, 18, 3646−3649.
[12] a) S. Jana, M. D. Clements, B. K. Sharp, N. Zheng, Org. Lett. 2010, 12, 3736-
3739; b) A. F. Khlebnikov, M. S. Novikov, Tetrahedron 2013, 69, 3363-3401; c)
P. W. Davies, M. Garzón, Asian J. Org. Chem. 2015, 4, 694-708; d) J. O.
Ruvinskaya, N. V. Rostovskii, I. P. Filippov, A. F. Khlebnikov, M. S. Novikov,
Org. Biomol. Chem. 2018, 16, 38-42; e) P. A. Sakharov, M. S. Novikov, A. F.
Khlebnikov, J. Org. Chem. 2018, 83, 8304−8314; f) Y. Baek, J. Kim, H. Kim, S. J.
[1]
a) C. T. Walsh, Tetrahedron Lett. 2015, 56, 3075-3081; b) J. F.
Gonzalez, I. Ortin, E. de la Cuesta, J. C. Menendez, Chem. Soc. Rev.
2012, 41, 6902-6915; c) I. Khan, A. Ibrar, N. Abbas, A. Saeed, Eur. J.
Med. Chem. 2014, 76, 193-244; d) A. E. Goetz, T. K. Shah, N. K. Garg,
Chem. Commun. 2015, 51, 34-45; e) M. Gaba, C. Mohan, Med. Chem.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.