CHAI ET AL.
7
TABLE 1 Results of the sample analysis and recoveries of spiked Cys
Technology Development, China (No. 2013YQ47078102‐3), the
Science‐Technology Development Project of Jilin Province of China
(Nos. 20130206014GX, 20140623007TC, and 20150204017YY), the
Natural Science Foundation of Jilin Province (20160101314JC)
and the Program for the State Key Laboratory of Inorganic Synthesis
and Preparative Chemistry Open Project, Jilin University, China
(No. 2014‐07).
in real samples
Cys added/
mol l
Recovery RSD(%)
(%)
−
1
−1
Sample
Cys found/mol l
Miscellaneous
flower
0
Not detected
—
—
honey
−
−
−
6
6
6
−6
3.00 × 10
5.00 × 10
7.00 × 10
2.99 × 10
5.08 × 10
7.06 × 10
99.7
101.6
100.9
1.27
1.49
1.52
−6
−6
ORCID
Linden honey
0
Not detected
—
−
6
6
6
−6
3.00 × 10
5.00 × 10
7.00 × 10
3.01 × 10
100.3
99.2
102.1
1.21
0.94
1.49
−
−
−6
−6
4.96 × 10
7.15 × 10
REFERENCES
[
1] H. L. Chen, X. K. Li, Y. B. Wu, W. Gao, R. C. Bai, DaltonTrans. 2012, 41,
3292.
1
3
.6
|
Application for Cys determination in real
[
2] M. G. Tian, F. Q. Guo, Y. M. Sun, W. J. Zhang, F. Miao, Y. Liu, G. F.
Song, C. L. Ho, X. Q. Yu, J. Z. Sun, W. Y. Wong, Org. Biomol. Chem.
2014, 12, 6128.
samples
In order to evaluate the feasibility of the proposed method for real
sample detection, the developed fluorescent sensor was applied for
the determination of Cys in two honey samples and the results are
shown inTable 1. The background Cys content in honey samples could
not be detected by the method. The standard addition method was
used to verify the feasibility of this method. The results from three
independent experiments were averaged. From Table 1, we can see
that the results obtained by the proposed sensor were in good agree-
ment with the added concentration of Cys in the honey samples, and
the recoveries of the two honey samples were found to be between
[3] E. Weerapana, C. Wang, G. M. Simon, F. Richter, S. Khare, M. B. D.
Dillon, D. A. Bachovchin, K. Mowen, D. Baker, B. F. Cravatt, Nature
2
010, 468, 790.
[
[
[
4] J. J. Zhu, X. C. Song, L. Gao, Z. M. Li, Z. Liu, S. Ding, S. B. Zou, Y. He,
Biosens. Bioelectron. 2014, 53, 71.
5] H. Huang, F. P. Shi, Y. A. Li, L. Niu, Y. Gao, S. M. Shah, X. G. Su, Sens.
Actuators B Chem. 2013, 178, 532.
6] N. M. Giles, A. B. Watts, G. I. Giles, F. H. Fry, J. A. Littlechild, C. Jacob,
Chem. Biol. 2003, 10, 677.
[7] S. Shahrokhian, Anal. Chem. 2001, 73, 5972.
9
9.2% and 102.1%, with relative significant difference (RSD) values
[8] R. Janáky, V. Varga, A. Hermann, P. Saransaari, S. S. Oja, Neurochem.
Res. 2000, 25, 1397.
ranging from 0.94% to 1.52%. The results revealed that the proposed
fluorescent sensor was an applicable platform for Cys analysis in prac-
tical samples with satisfactory results.
[9] R. Chand, S. K. Jha, K. Islam, D. Han, I. S. Shin, Y. S. Kim, Biosens.
Bioelectron. 2013, 40, 362.
[
[
[
10] G. Chwatko, E. Bald, Talanta 2000, 52, 509.
11] Y. V. Tcherkas, A. D. Denisenko, J. Chromatogr. A 2001, 913, 309.
12] J. S. Lee, P. A. Ulmann, M. S. Han, C. A. Mirkin, Nano Lett. 2008, 8, 529.
4
|
CONCLUSION
2
[13] O. Rusin, N. N. S. Luce, R. A. Agbaria, J. O. Escobedo, S. Jiang, I. M.
In summary, a sensitive and selective fluorescent sensor L–Cu for the
Warner, F. B. Dawan, K. Lian, R. M. Strongin, J. Am. Chem. Soc. 2004,
detection of Cys was developed based on a complex between bi‐8‐
1
26, 438.
14] N. Burford, M. D. Eelman, D. E. Mahony, M. Morash, Chem. Commun.
003, 0, 146.
2+
carboxamidoquinoline derivative ligand (L) and Cu . The ligand L
[
exhibited strong fluorescence, which was effectively quenched by
2
2+
complexation with Cu . With the addition of Cys, significant fluores-
[
[
[
[
15] J. M. Zen, A. S. Kumar, J. C. Chen, Anal. Chem. 2001, 73, 1169.
16] K. S. Tseng, L. C. Chen, K. C. Ho. Electroanalysis 2006, 18, 1306.
17] T. Inoue, J. R. Kirchhoff, Anal. Chem. 2002, 74, 1349.
cence enhancement was observed due to the decomplexation of
2+
2
Cu from the L–Cu complex to release the fluorophore L. The recov-
ered fluorescence intensity of the system is linear to the Cys concen-
18] Y. Sato, T. Iwata, S. Tokutomi, H. Kandori, J. Am. Chem. Soc. 2005, 127,
−6
−6
tration ranging from 1 × 10 mol/l to 8 × 10 mol/l. The detection
1
088.
−
7
limit for Cys is 1.92 × 10 mol/l. In addition, the sensor exhibits excel-
[
19] X. Dai, Q. H. Wu, P. C. Wang, J. Tian, Y. Xu, S. Q. Wang, J. Y. Miao, B.
lent selectivity for Cys detection over other competing natural α‐
X. Zhao, Biosens. Bioelectron. 2014, 59, 35.
2
+
amino acids. As for the interference caused by His, Ni was selected
as a masking agent to eliminate this. Furthermore, the proposed
method was applied successfully to the detection of Cys in honey sam-
[20] M. J. Wei, P. Yin, Y. M. Shen, L. L. Zhang, J. H. Deng, S. Y. Xue, H. T. Li,
B. Guo, Y. Y. Zhang, S. Z. Yao, Chem. Commun. 2013, 49, 4640.
[
21] J. J. Zhang, J. X. Wang, J. T. Liu, L. L. Ning, X. Y. Zhu, B. F. Yu, X. Y. Liu,
2
X. J. Yao, H. X. Zhang, Anal. Chem. 2015, 87, 4856.
ples with satisfactory results. Therefore, the complex L–Cu can be uti-
[
[
22] Y. Zhou, J. Yoon, Chem. Soc. Rev. 2012, 41, 52.
lized as a sensitive and selective fluorescent sensor for Cys analysis
over other naturally occurring α‐amino acids, which could meet the
selective requirements for practical applications.
23] Y. L. Duan, Y. G. Shi, J. H. Chen, X. H. Wu, G. K. Wang, Y. Zhou, J. F.
Zhang, Tetrahedron Lett. 2012, 53, 6544.
[
[
24] S. A. Lee, J. J. Lee, J. W. Shin, K. S. Min, C. Kim, Dyes Pigm. 2015, 116,
1
31.
ACKNOWLEDGEMENTS
25] C. C. Zhao, Y. Chen, H. Y. Zhang, B. J. Zhou, X. J. Lv, W. F. Fu,
This work was supported by the National Natural Science Foundation
of China (No. 21207047), the State Major Project for Science and
J. Photochem. Photobiol. A 2014, 282, 41.
[26] X. H. Zhou, D. M. Kong, H. X. Shen, Anal. Chem. 2010, 82, 789.