J. Am. Chem. Soc. 2001, 123, 7429-7430
7429
Scheme 1
Synthesis of 6-Aza-bicyclo[3,2,1]octan-3-ones via
Vinylogous Imide Photochemistry: An Approach to
the Synthesis of the Hetisine Alkaloids
Young-Shin Kwak and Jeffrey D. Winkler*
Department of Chemistry
The UniVersity of PennsylVania
Philadelphia, PennsylVania 19104
ReceiVed February 28, 2001
ReVised Manuscript ReceiVed May 25, 2001
We have demonstrated that the intramolecular photocycload-
dition of vinylogous amides (1,6-dienes) 1 leads, upon retro-
Mannich fragmentation of 2 and isomeric Mannich closure of
the derived ketoiminium 3, to the synthesis of perhydroindoles
4, as outlined in Scheme 1.1 The utility of this methodology for
the synthesis of nitrogen-containing ring systems is underscored
by the successful application of this methodology to the syntheses
of mesembrine,2 vindorosine,3 and manzamine A.4 We have
recently examined the photocycloaddition of the corresponding
1,5-dienes, that is, 5, and we report herein that these substrates
lead to a general synthesis of azabicyclo[3,2,1]octanones, 8, via
the “crossed” photoadduct, 6. The widespread distribution of the
azabicyclo[3,2,1]octanone ring system in molecules of nature, that
is, sarain A, 9,5 securinine, 10,6 and hetisine, 11,7 and the
importance of this ring system in medicinal chemistry for the
development of analgesics8 and muscarinic antagonists9 suggests
that the photochemistry of 5 should be of comparable utility to
that of 1.
Scheme 2
Scheme 3
The synthesis of 5 and its conversion to 8 is outlined in Scheme
2. Michael addition of allylamine to 3-butynone gave vinylogous
amide 12, which on reaction with di-tert-butyl-carbonate in the
presence of DMAP gave the photosubstrate 5 in 85% yield over
two steps. It is interesting to note that direct irradiation of 12 did
not produce the desired photoadduct, the amine analogue of 6, a
result that is consistent with the work of Swindell.10 This
difference in photoreactivity can be attributed to the importance
of sp2 character of the nitrogen in the photocycloaddition, an
indication of the subtle balance in vinylogous amide photochem-
(1) Winkler, J.; Mazur, C.; Liotta, F. Chem. ReV. 1995, 95, 2003-2020.
(2) Winkler, J.; Muller, C.; Scott, R. J. Am. Chem. Soc. 1988, 110, 4831-
4832.
(3) Winkler, J.; Scott, R.; Williard, P. J. Am. Chem. Soc. 1990, 112, 8971-
8975.
(4) Winkler, J.; Axten, J. J. Am. Chem. Soc. 1998, 120, 6425-6426.
(5) (a) Sung, M. J.; Lee, H. I.; Chong, Y.; Cha, J. K. Org. Lett. 1999, 1,
2017. (b) Jaroch, S.; Matsuoka, R. T.; Overman, L. E. Tetrahedron Lett. 1999,
40, 8719. (c) Irie, O.; Samizu, K.; Henry, J. R.; Weinreb, S. M. J. Org. Chem.
1999, 64, 587-595. (d) Denhart, D. J.; Griffith, D. A.; Heathcock, C. H. J.
Org. Chem. 1998, 63, 9616-9617
(6) For recent publications of syntheses of securinine, see: (a) Honda, T.;
Namiki, H.; Kudoh, M.; Watanabe, N.; Nagase, H.; Mizutani, H. Tetrahedron
Lett. 2000, 41, 5927-5930. (b) Han, G.; LaPorte, M. G.; Folmer, J. J.; Werner,
K. M. J. Org. Chem. 2000, 645, 6293-6306.
istry, as nitrogen protection is not needed for the photocycload-
dition of 1 (Scheme 1).
(7) For synthetic studies of hetisine, see: Van der Baan, J. L.; Bickelhaupt,
F. Recl. TraV. Chim. Pays-Bas. 1975, 94, 109-12.
Irradiation of 5 (0.01 M in MeCN, Pyrex filter, 450-W Hanovia
medium-pressure lamp) led to the bicyclic photoadduct 6 in 87%
yield. The formation of the crossed photoadduct is consistent with
the “rule of five” observed in the intramolecular photocycload-
dition of 1,5-dienes.11 Exposure of 6 to refluxing ethanol led to
the retro-Mannich fragmentation product 7, which on reaction
with catalytic PPTS gave the Mannich product 8 in 87% yield.
Having established the viability of this approach for the construc-
(8) (a) Takeda, M.; Inoue, H.; Noguchi, K.; Honma, Y.; Kawamori, M.;
Tsukamoto, G.; Yamawaki, y.; Saito, S. Chem. Pharm. Bull. 1976, 24,
1514-1520. (b) Takeda, M.; Inoue, H.; Noguchi, K.; Honma, Y.; Kawamori,
M.; Tsukamoto, G.; Yamawaki, y.; Saito, S. Chem. Pharm. Bull. 1976, 24,
2-1007.
(9) (a) Carroll, F.; Abraham, P.; Parham, K.; Griffith, R.; Ahmad, A.;
Richard, M.; Padilla, F.; Witkin, J.; Chiang, P. J. Med. Chem. 1987, 30, 805-
809. (b) Triggle, D. J.; Kwon, Y. W.; Abraham, P.; Pitner, J. B.; Mascarella,
S. W.; Carroll, F. I. J. Med. Chem. 1991, 34, 3164-3171. (c) Carroll, F. I.;
Abraham, P.; Mascarella, S. W.; Singh, P.; Moreland, C. G.; Sanker, S. S.;
Kwon, Y. W.; Triggle, D. J. J. Med. Chem. 1991, 34, 1436-1440.
(10) Swindell, C. S.; Patel, B. P.; deSolms, S. J. J. Org. Chem. 1987, 52,
2346-2355
(11) (a) Crimmins, M. Chem. ReV. 1988, 88, 1453. (b) Crimmins, M.;
Reinhold, T. Org. React. (N.Y.) 1993, 44, 297; Oppolzer, W. Acc. Chem.
Res. 1982, 15, 135.
10.1021/ja010542w CCC: $20.00 © 2001 American Chemical Society
Published on Web 07/06/2001