BULLETIN OF THE
Communication
KOREAN CHEMICAL SOCIETY
Scialdone, S. T. Nguyen, J. Org. Chem. 2003, 68, 7884. (f)
U. S. Sørensen, T. J. Bleisch, A. E. Kingston, R. A. Wright,
B. G. Johnson, D. D. Schoepp, P. L. Ornstein, Bioorg. Med.
Chem. 2003, 11, 197. (g) J. K. Pokorski, M. C. Myers, D. H.
Appella, Tetrahedron Lett. 2005, 46, 915. (h) K. Kagayama,
T. Morimoto, S. Nagata, F. Katoh, X. Zhang, N. Inoue, A.
Hashino, K. Kageyama, J. Shikaura, T. Niwa, Bioorg. Med.
Chem. 2009, 17, 6959. (i) S. Chanthamath, S. Takaki, K.
Shibatomi, S. Iwasa, Angew. Chem. Int. Ed. 2013, 52, 5818.
. (a) E. E. Wilson, K. X. Rodriguez, B. L. Ashfeld, Tetrahe-
dron 2015, 71, 5765. (b) D. Yin, H. Liu, C.-D. Lu, Y.-J. Xu,
J. Org. Chem. 2017, 82, 3252. (c) W. Sun, C. Peng, Z. Yao,
F. Xu, Org. Biomol. Chem. 2019, 17, 6620.
9. When the reaction was performed with α-substituted acroleins
and diazoacetates in the presence of 20 mol % of 1,
2-pyrazolines were obtained as major products. For the
details, see L. Gao, G.-S. Hwang, M. Y. Lee, D. H. Ryu,
Chem. Commun 2009, (36), 5460.
10. M. Defosseux, N. Blanchard, C. Meyer, J. Cossy, J. Org.
Chem. 2004, 69, 4626.
11. (a) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2003, 125, 6388.
(b) D. H. Ryu, G. Zhou, E. J. Corey, J. Am. Chem. Soc. 2004,
126, 4800. (c) D. H. Ryu, E. J. Corey, J. Am. Chem. Soc. 2005,
127, 5384. (d) M. Y. Jin, G.-S. Hwang, H. I. Chae, S. H. Jung,
D. H. Ryu, Bull. Kor. Chem. Soc. 2010, 31, 727. (e) H. I. Chae,
G.-S. Hwang, M. Y. Jin, D. H. Ryu, Bull. Kor. Chem. Soc.
2010, 31, 1047. (f) S. H. Shin, J. H. Han, S. I. Lee, Y. B. Ha,
D. H. Ryu, Bull. Kor. Chem. Soc. 2011, 32, 2885.
12. (a) G. Ohloff, W. Pickenhagen, Helv. Chim. Acta 1969, 52, 880.
(b) J. E. Baldwin, C. Ullenius, J. Am. Chem. Soc. 1974, 96,
1542. (c) H. Günther, J.-B. Pawliczek, J. Ulmen, W. Grimme,
Chem. Ber. 1975, 108, 3141. (d) J. M. Brown, B. T. Golding,
J. J. Stofko, J. Chem. Soc. Perkin Trans 1978, 2, 436. (e) M. P.
Schneider, A. Rau, J. Am. Chem. Soc. 1979, 101, 4426.
13. (a) C. Aïssa, Eur. J. Org. Chem. 2009, 2009, 1831. (b) B.
Chatterjee, S. Bera, D. Mondal, Tetrahedron Asymmetry
2014, 25, 1. (c) D. Gueyrard, Synlett 2018, 29, 34.
3
4
. For the catalytic asymmetric synthesis of cis-dicarbonyl-
cyclopropane, see J. Wang, X. Liu, S. Dong, L. Lin, X. Feng,
J. Org. Chem 2013, 78, 6322.
5
. (a) E. J. Corey, Angew. Chem. Int. Ed. 2009, 48, 2100.
(
b) S. Y. Shim, D. H. Ryu, Acc. Chem. Res. 2019, 52, 2349.
. (a) L. Gao, G.-S. Hwang, D. H. Ryu, J. Am. Chem. Soc.
011, 133, 20708. (b) S. Y. Shim, J. Y. Kim, M. Nam, G.-S.
6
2
Hwang, D. H. Ryu, Org. Lett. 2016, 8, 160. (c) S. Y. Shim,
S. M. Cho, A. Venkateswarlu, D. H. Ryu, Angew. Chem. Int.
Ed. 2017, 56, 8663. (d) S. Y. Shim, Y. Choi, D. H. Ryu,
J. Am. Chem. Soc. 2018, 140, 11184.
7
. (a) T. Hudlicky, R. Fan, J. W. Reed, K. G. Gadamasetti, Org.
React. 1992, 41, 1. (b) S. Vshyvenko, J. W. Reed, T.
Hudlicky, E. Piers, Comprehensive Organic Synthesis, 2nd
ed., Vol. 5, Elsevier B.V, Amsterdam, 2014, p. 999. (c) S.
Krüger, T. Gaich, J. Beilstein, Org. Chem. 2014, 10, 163.
. Sterically bulky Lewis acid catalyst has improved the yield due
to avoidance of some competitive reactions. For the examples
of aluminium catalyst, see (a) M. B. Boxer, H. Yamamoto,
Org. Lett 2005, 7, 3127. (b) H. Yamamoto, K. Ishihara, Acid
Catalysis in Modern Organic Synthesis, Vol. 1, Wiley-VCH,
Weinheim, 2009, p. 241. For the examples of COBI catalyst,
see (c) L. Gao, B. C. Kang, G.-S. Hwang, D. H. Ryu, Angew.
Chem. Int. Ed 2012, 51, 8322. (d) S. I. Lee, J. H. Jang, G.-S.
Hwang, D. H. Ryu, J. Org. Chem. 2013, 78, 770. (e) S. I. Lee,
G.-S. Hwang, D. H. Ryu, J. Am. Chem. Soc. 2013, 135, 7126.
14. H. Imogai, G. Bernardinelli, C. Gränicher, M. Moran, J.-C.
Rossier, P. Müller, Helv. Chim. Acta 1998, 81, 1754.
15. (a) M. Nasrollahzadeh, M. Atarod, M. Alizadeh, A.
Hatamifard, S. M. Sajadi, Curr. Org. Chem. 2017, 21, 708.
(b) G. Albano, L. A. Aronica, Eur. J. Org. Chem. 2017, 48,
7204. (c) I. Kanwal, A. Mujahid, N. Rasool, K. Rizwan, A.
Malik, G. Ahmad, S. A. A. Shah, U. Rashid, N. M. Nasir,
Catalysts 2020, 10, 443.
16. (a) Z. Lu, S. Ma, J. Org. Chem. 2006, 71, 2655. (b) H. Park,
C. H. Park, S.-T. Kang, J. H. Jeon, R. Archary, J.-Y. Lee, P.
Kim, H. Jung, C.-S. Yun, J. Y. Hwang, D. H. Ryu, S. Y.
Cho, Bull. Kor. Chem. Soc. 2017, 38, 278.
17. (a) S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58,
9633. (b) G. A. Molander, N. Ellis, Acc. Chem. Res. 2007,
40, 275. (c) R. Martin, S. L. Buchwald, Acc. Chem. Res.
2008, 41, 1461. (d) D. E. Jose, U. S. Kanchana, T. V.
Mathew, G. Anilkumar, J. Organomet. Chem. 2020, 927,
121538.
8
(f) S. I. Lee, K. E. Kim, G.-S. Hwang, D. H. Ryu, Org. Bio-
mol. Chem. 2015, 13, 2745. (g) S. T. Kim, R. P. Pandit, J.
Yun, D. H. Ryu, Org. Lett. 2021, 23, 213.
Bull. Korean Chem. Soc. 2021, Vol. 42, 675–678
© 2021 Korean Chemical Society, Seoul & Wiley-VCH GmbH
www.bkcs.wiley-vch.de
678