Angewandte
Chemie
Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112,
382; Angew. Chem. Int. Ed. 2000, 39, 2285.
4] J. T. Kim, A. V. Kelꢀin, V. Gevorgyan, Angew. Chem. 2003,
15, 102; Angew. Chem. Int. Ed. 2003, 42, 98.
5] A. W. Sromek, M. Rubina, V. Gevorgyan, J. Am. Chem.
Soc. 2005, 127, 10500.
2
[
[
[
[
[
1
6] A. W. Sromek, A. V. Kelꢀin, V. Gevorgyan, Angew. Chem.
2004, 116, 2330; Angew. Chem. Int. Ed. 2004, 43, 2280.
7] A. V. Kelꢀin, A. W. Sromek, V. Gevorgyan, J. Am. Chem.
Soc. 2001, 123, 2074.
8] For examples of [1,2]-shifts in carbenoids, see: a) F. Xiao,
J. Wang, J. Org. Chem. 2006, 71, 5789, and references
therein; b) J. P. Markham, S. T. Staben, F. D. Toste, J. Am.
Chem. Soc. 2005, 127, 9708; c) D. J. Gorin, N. R. Davis,
F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260.
[
9] For general reviews, see: a) “One or more CH and/or CC
bond(s) formed by rearrangement”: P. H. Ducrot in
Comprehensive Organic Functional Group Transforma-
tions II, Vol. 1 (Eds.: A. R. Katritzky, R. J. K. Taylor),
Elsevier, Oxford, UK, 2005, pp. 375 – 426; b) “Carbon–
Carbon s-Bond Formation: Rearrangement Reactions”:
G. Pattenden in Comprehensive Organic Synthesis: Selec-
tivity, Strategy, and Efficiency in Modern Organic Chemis-
try, Vol. 3 (Eds: B. M. Trost, I. Fleming), Pergamon, New
York, 1991, pp. 705 – 1043.
Scheme 1. Proposed mechanisms for the synthesis of furans 4.
[
10] While this manuscript was in preparation, two independ-
philic mechanism (Scheme 1, paths A and B) is supported by
the data presented in Table 2. Thus, the migratory aptitude of
a phenyl vs. that of a methyl group (> 100:1) is in good
agreement with that reported in the literature for rearrange-
ent works on synthesis of carbocycles involving [1,2]-alkyl shifts
to carbenoid center in allenes were reported. See: a) H. Funami,
H. Kusama, N. Iwasawa, Angew. Chem. Int. Ed. 2007, 46, 909;
b) J. H. Lee, F. D. Toste, Angew. Chem. Int. Ed. 2007, 46, 912.
[11] For a synthesis of dehydrofuranones by [1,2]-alkyl shift, analo-
gous to a formal ketol rearrangement, see: S. F. Kirsch, J. T.
Binder, C. LiØbert, H. Menz, Angew. Chem. 2006, 118, 6010;
Angew. Chem. Int. Ed. 2006, 45, 5878, and references therein.
[
17]
ments of cations. Although a mechanism involving [1,2]-
[
5,8]
alkyl shift in the carbenoid intermediate 12
(Scheme 1,
path C) cannot be completely ruled out at this point, it is
[
18,19]
considered to be less likely.
[
[
12] See the Supporting Information for details.
13] For examples of ring expansions in the synthesis of carbocycles
proceeding by a carbenoid mechanism, see Ref. [9].
In summary, we have developed a novel metal-catalyzed
method for the synthesis of furans, which proceeds by an
unprecedented [1,2]-alkyl shift in allenyl ketones. This
method allows for efficient synthesis of up to fully carbon-
substituted and fused furans.
[14] For activation of enone moiety by Lewis acids see, for example:
a) R. F. Childs, D. L. Mulholland, A. Nixon, Can. J. Chem. 1982,
0, 801; b) T. Schwier, V. Gevorgyan, Org. Lett. 2005, 7, 5191.
15] For examples of [1,2]-shifts in vinyl cations, see: a) G. Capozzi, V.
6
[
Lucchini, F. Marcuzzi, G. Melloni, Tetrahedron Lett. 1976, 17,
Received: March 15, 2007
Published online: May 25, 2007
717; b) K. P. Jäckel, M. Hanack, Tetrahedron Lett. 1974, 15, 1637.
[
16] a) B. Miller, J. Am. Chem. Soc. 1970, 92, 432; b) W. R. Dolbier,
K. E. Anapolle, L. McCullagh, K. Matsui, J. M. Riemann, D.
Rolison, J. Org. Chem. 1979, 44, 2845; c) M. Ode, R. Breslow,
Tetrahedron Lett. 1973, 14, 2537.
17] W. H. Saunders, R. H. Paine, J. Am. Chem. Soc. 1961, 83, 882.
18] The observed migratory aptitude trends (Ph vs. Et, and Ph vs.
Me) do not correspond to those reported in literature for [1,2]-
alkyl migration to a carbenoid center. See, for example: a) H.
Philip, J. Keating, Tetrahedron Lett. 1961, 2, 523; b) W. Graf
von der Schulenburg, H. Hopf, R. Walsh, Angew. Chem. 1999,
111, 1200; Angew. Chem. Int. Ed. 1999, 38, 1128.
Keywords: allenyl ketones · furans · gold · Lewis acids ·
.
rearrangment
[
[
[
1] For a recent review, see: S. F. Kirsch, Org. Biomol. Chem. 2006,
4, 2076.
[
2] a) J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55, 3450;
b) J. A. Marshall, X.-J. Wang, J. Org. Chem. 1991, 56, 960;
c) J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169;
d) J. A. Marshall, C. A. Sehon, J. Org. Chem. 1995, 60, 5966;
e) J. A. Marshall, E. M. Wallace, J. Org. Chem. 1995, 60, 796.
3] a) A. S. K. Hashmi, Angew. Chem. 1995, 107, 1749; Angew.
Chem. Int. Ed. Engl. 1995, 34, 1581; b) A. S. K. Hashmi, L.
[19] No cyclopropanation product was observed in the cycloisome-
rization of dimethylallenyl ketone 3i; however, this transforma-
tion was reported as a major process in the cycloisomerization of
a carbocyclic analogue of 12. See Ref. [9a].
[
Angew. Chem. Int. Ed. 2007, 46, 5195 –5197
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5197