2
284 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 10
Letters
sions. This work was financially supported by Grants-in-Aid
from Japan Science and Technology Agency (JST), the Takeda
Science Foundation.
(13) Vennestrom, J. L.; Makler, M. T.; Angerhofer, C. K.; Williams, J.
A. Antimalarial Dyes Revisited: Xanthenes, Azines, Oxazines, and
Thiazines. Antimicrob. Agents Chemother. 1995, 39, 2671-2677 and
references cited therein.
(
14) Atamna, H.; Krugliak, M.; Shalmiev, G.; Deharo, E.; Pescarmona,
G.; Ginsburg, H. Mode of Antimalarial Effect of Methylene Blue
and Some of its Analogues on Plasmodium falcilarun in Culture and
Their Inhibition of P. Vinckei and P. Yoelii nigeriensis In Vivo.
Biochem. Pharmacol. 1996, 51, 693-700.
Supporting Information Available: Experimental procedures
and characterization data for all new compounds. This material is
available free of charge via the Internet at http://pubs.acs.org.
References
(
15) Parveen, S.; Khan, M. O. F.; Austin, S. E.; Croft, S. L.; Yardley, V.;
Rock, P.; Douglas, K. T. Antitrypanosomal, Antileishmanial, and
Antimalarial Activities of Quaternary Arylalkylammonium 2-Amino-
4-Chlorophenyl Phenyl Sulfides, a New Class of Trypanothione
Reductase Inhibitor, and of N-Acyl Derivatives of 2-Amino-4-
Chlorophenyl Phenyl Sulfide. J. Med. Chem. 2005, 48, 8087-8097.
16) Guttmann, P.; Ehrlich, P. Ueber die Wirkung des Methylenblau bei
Malaria. Berl. Klin. Wochenschr. 1891, 28, 953-956.
(1) The World Health Report 2002, World Health Organization (WHO),
http://www.who.int/whr/2002/en/.
(
2) Snow, R. W.; Guerra, C. A.; Noor, A. M.; Myint, H. Y.; Hay, S. I.
The Global Distribution of Clinical Episodes of Plasmodium falci-
parum Malaria. Nature 2005, 434, 214-217.
(
(
(
(
(
(
3) Peters, W. Antimalarial Drug Resistance: An Increasing Problem.
(
(
Br. Med. Bull. 1982, 38, 187-192.
4) Wernsdorfer, W. H.; Pyne, D. The Dynamics of Drug Resistance in
Plasmodium falciparum. Pharmacol. Ther. 1991, 50, 95-121.
5) Rosenthal, P. J.; Miller, L. H. In Antimalarial Chemotherapy:
Rosenthal, P. J., Ed.; Humana Press: Totowa, 2001; pp 3-15.
6) Go, M.-L. Novel Antiplasmodial Agents. Med. Res. ReV. 2003, 23,
56-487.
7) Thayer, A. M. Fighting Malaria. Chem. Eng. News 2005, 83 (43)
9-82.
8) The conceptual term, DLC, was originally proposed by Chen in his
anticancer research work. It has subsequently been reported that
several DLC compounds exhibit antitumor activity by their selective
accumulation in the mitochondria of carcinoma cells. We also
postulate that the selective accumulation of DLCs in plasmodial
mitochondria would cause the growth inhibition of malaria parasites.
See: Chen, L. B. Mitochondrial Membrane Potential in Living Cells.
Ann. ReV. Cell. Biol. 1988, 4, 155-181.
17) Recently, a clinical study of methylene blue for malaria treatment
has been reported. Meissner, P. E.; Mandi, G.; Coulibaly, B.; Witte,
S.; Tapsoba, T.; Mansmann, U.; Rengelshausen, J.; Schiek, W.; Jahn,
A.; Walter-Sack, I.; Mikus, G.; Burhenne, J.; Riedel, K.-D.; Schirmer,
R. H.; Kouyat e´ , B.; M u¨ ller O. Methylene Blue for Malaria in
Africa: Results from a Dose-Finding Study in Combination with
Chloroquine. Malaria J. 2006, 5, 84, 1-5.
4
6
(18) Basic blue 3 (1a) was purchased from MP Biomedicals (dye content
∼
60%). Dyes 2-7 were also purchased from commercial suppliers
(
see Supporting Information).
(
19) Peters, W.; Portus, J. H.; Robinson, B. L. Chemotherapy of Rhodent
Malaria. 21. Value of Drug-Resistant Strains of Plasmodium berghei
in Screening for Blood Schizoncidal Activity. Ann. Trop. Med.
Parasitol. 1975, 69, 155-171.
(
9) Takasu, K.; Inoue, H.; Kim, H.-S.; Suzuki, M.; Shishido, T.; Wataya,
Y.; Ihara, M. Rhodacyanine Dyes as Antimalarials. 1. Preliminary
Evaluation of Their Activity and Toxicity. J. Med. Chem. 2002, 45,
(20) Jose, K.; Burgess, K. Benzophenoxazine-Based Fluorescent Dyes for
Labeling Biomolecules. Tetrahedron 2006, 62, 11021-11037.
(
21) Crossley, M. L.; Turner, R. J.; Hofmann, C. M.; Dreisbach, P. F.;
Parker, R. P. Chemotherapeutic Dyes. II. 5-Arylamino-9-Dialky-
laminobenzo[a]phenoxazines. J. Am. Chem. Soc. 1952, 74, 578-
9
95-998.
(
(
(
10) Takasu, K.; Pudhom, K.; Kaiser, M.; Brun, R.; Ihara, M. Synthesis
and Antimalarial Efficacy of Aza-Fused Rhodacyanines In Vitro and
in the P. berghei Mouse Model. J. Med. Chem. 2006, 49, 4795-
584.
(22) Psaar, H.; Heitzer, H. Notiz zur Konstitution der Oxazinfarbstoffe
4
798.
C. I. Basic Blue 3 und C. I. Basic Blue 4. Chem. Ber. 1969, 102,
11) Pudhom, K.; Kasai, K.; Terauchi, H.; Inoue, H.; Kaiser, M.; Brun,
R.; Ihara, M.; Takasu, K. Synthesis of Three Classes of Rhodacyanine
Dyes and Evaluation of their In Vitro and In Vivo Antimalarial
Activity. Bioorg. Med. Chem. 2006, 14, 8550-8563.
3603-3604.
(23) Desjardins, R. E.; Canfield, C. J.; Haynes, J. D.; Chulay, J. D.
Quantitative Assessment of Anti-Malarial Activity In Vitro by a
Semiautomated Microdilution Technique. Antimicrob. Agents Chemo-
ther. 1979, 16, 710-718.
12) Takasu, K.; Shimogama, T.; Saiin, C.; Kim, H.-S.; Wataya, Y.; Brun,
R.; Ihara, M. Synthesis and Evaluation of â-Carbolinium Cations as
New Antimalarial Agents Based on π-Delocalized Lipophilic Cation
(DLC) Hypothesis. Chem. Pharm. Bull. 2005, 53, 653-661.
JM070201E