Notes and references
†
All chemicals used were of analytical grade and purchased form
Aldrich and Acros. The catalyst used was 5% Pd/Al2O3 (Engelhard, code
40692).
General procedure for hydrogenation of isophorone. Presonication of
catalyst-modifier systems and hydrogenation reactions were carried out at
25 °C as described earlier.20 The standard system included 50 mg of 5%
Pd/Al2O3, 1.0 mmol of (S)-proline, 5 ml of MeOH, and 1.0 mmol substrate.
Alterations will be noted separately. The absolute configuration of the major
product was determined by comparison with a known sample. Product
identification was monitored by GC-MS (Shimadzu QP 5050 System),
while the enantiomeric excesses (ee % = ¡[R] 2 [S]¡ 3 100/([R] + [S]))
were determined at close to 100% conversion ( > 98%) by gas chromatog-
Fig. 1 Effect of hydrogen pressure on enantiomeric excess in the
hydrogenation of isophorone on (S)-proline modified Pd/Al2O3 catalyst (-
no sonication, / 20 min presonication, standard system.
raphy (HP 5890 GC-FID, 30
column).
Transmission electron microscopy (TEM). Measurements were per-
formed with a JEOL 4000FX HREM as described earlier.20
m long Betadex (Supelco) capillary
As the results show, presonication increased optical yields
throughout the hydrogen pressure range. The best ee value obtained
with presonication exceeds 80% ee. As we are able to achieve a
steady ee value above 40 bar hydrogen pressure 50 bar pressure was
selected for further investigations.
The effect of catalyst/substrate ratio on selectivity is also an
important parameter. We studied the effect of different substrate
amounts on enantioselectivity. Fig. 2 illustrates the ee vs.
isophorone amount obtained with and without ultrasonic irradia-
tion. We observed maximum ee in both cases corresponding to a
1 : 2 isophorone–proline ratio. Using optimized conditions we were
able to obtain an unprecedented high enantiomeric excess (85% ee
for (S) product) in the present reaction.
1 G. Consiglio, in Encyclopedia of Catalysis, ed. I. T. Horváth, Wiley,
New York, 2003, vol. 1, p. 407.
2 M. Bartók and Á. Molnár, Heterogeneous Catalytic Hydrogenation, in
Chemistry of Functional Groups, Suppl. A3. ed. S Patai, Wiley,
Chichester, 1997, ch. 16, p. 843; G. V. Smith and F. Notheisz,
Heterogeneous Catalysis in Organic Chemistry, Academic Press, San
Diego, 1999.
3 D. E. de Vos, I. F. J. Vankelecom and P. A. Jacobs, eds., Chiral Catalyst
Immobilization and Recycling, Wiley-VCH, Weinheim, 2000.
4 A. Baiker and H.-U. Blaser, Handbook of Heterogeneous Catalysis, G.
Ertl, H. Knözinger and J. Weitkamp, eds., Wiley-VCH, Weinheim,
1997, vol. 5, p. 2422.
5 H.-U. Blaser, H.-P. Jalett, M. Müller and M. Studer, Catal. Today, 1997,
37, 441; A. Baiker, J. Mol Catal. A, 2000, 163, 205.
6 B. Török, K. Felföldi, K. Balázsik and M. Bartók, Chem. Commun.,
1999, 1725; M. Studer, S. Bukhardt and H.-U. Blaser, Chem. Commun.,
1999, 1727; C. Leblond, J. Wang, J. Liu, T. Andrews and Y. Sun, J. Am.
Chem. Soc., 1999, 121, 4920; K. Balázsik, K. Szöri, K. Felföldi, B.
Török and M. Bartók, Chem. Commun., 2000, 555; M. Studer, S.
Burkhardt, A. F. Indolese and H. U. Blaser, Chem. Commun, 2000,
1327; M. von Arx, T. Mallat and A. Baiker, Angew. Chem., Int. Ed.,
2001, 40, 2302; M. Sutyinszki, K. Szöri, K. Felföldi and M. Bartók,
Catal. Commun., 2002, 3, 125.
7 T. Sugimura, T. Osawa, S. Nakagawa, T. Harada and A. Tai, Stud. Surf.
Sci. Catal., 1996, 101, 231.
8 W. R. Huck, T. Mallat and A. Baiker, Catal. Lett., 2002, 80, 87.
9 K. Borszeky, T. Mallat and A. Baiker, Tetrahedron: Asymm., 1997, 8,
3745; I. Kun, B. Török, K. Felföldi and M. Bartók, Appl. Catal. A: Gen.,
2000, 203, 71.
10 Y. Nitta and K. Kobiro, Chem. Lett, 1996, 897.
11 A. Tungler, React. Kinet. Catal. Lett., 2001, 74, 271.
12 A. Tungler, T. Máthé, J. Petró and T. Tarnai, J. Mol. Catal., 1991, 61,
259.
13 M. Studer, H.-U. Blaser and C. Exner, Adv. Synth. Catal., 2003, 345,
45.
14 J. W. Chen, J. A. Chang and G. V. Smith, Chem. Eng. Symp. Ser., 1971,
67.
15 K. S. Suslick, Handbook of Heterogeneous Catalysis, G. Ertl, H.
Knözinger and J. Weitkamp, eds., Wiley-VCH, Weinheim, 1997, vol. 3,
p. 1350; B. Török, K. Balázsik, K. Felföldi and M. Bartók, Ultrasonics
Sonochem., 2001, 8, 191.
Fig. 2 Effect of reactant amount on enantiomeric excess in the hydro-
genation of isophorone on (S)-proline modified Pd/Al2O3 catalyst (- no
sonication, / 20 min presonication, standard system, 50 bar).
As ultrasounds initiate important changes on the catalyst16 we
studied the catalysts by high-resolution electron microscopy. It was
observed that presonication decreased the mean metal particle size
from 4.1 nm to 3.2 nm (after 10 min), 1.8 nm (after 20 min), 1.4 nm
(after min), respectively. The particle size decrease was not
dependent on the use of proline. According to Table 1, modifier-
free sonication decreased ee values. As a result we propose that the
surface cleaning effect of ultrasounds enhanced both adsorption of
the modifier and the modifier induced surface restructuring of the
metal.21 The joint effect of the two phenomena resulted in more
effective enantiodifferentiation. We also suggest that the key factor
(or the first step in the mechanism) in achieving high ees in this
system is adsorption of proline on the catalyst surface. Without
strong modifier adsorption high enantioselectivity cannot be
achieved in these cases.
In conclusion, our method successfully enhanced the enantio-
differentiation (up to 85% ee) in the hydrogenation of isophorone
by proline-modified Pd/Al2O3 catalyst. Most importantly, our
results clearly indicated that enhanced modifier adsorption is a
crucial factor in this process. Based on these findings design of new
catalysts capable of strong adsorption of proline may open up new
effective heterogeneous catalytic processes for CNC double bond
hydrogenation of a,b-unsaturated carbonyl compounds.
16 B. Török, K. Balázsik, M. Török, K. Felföldi and M. Bartók, Catal.
Lett., 2002, 81, 55.
17 J. P. Mikkola, T. Salmi, R. Sjoholm, P. Maki-Arvela and H. Vainio,
Stud. Surf. Sci. Catal., 2000, 130C, 2027; J. J. Lee, H. Kim and S. H.
Moon, Appl. Catal. B: Environ., 2003, 41, 171.
18 É. Sipos, A. Tungler and I. Bitter, J. Mol. Catal. A, 2003, 198, 167.
19 N. A. Paras and D. W. C. MacMillan, J. Am. Chem. Soc., 2001, 123,
4370; B. List, Tetrahedron, 2002, 58, 5573.
20 B. Török, K. Felföldi, G. Szakonyi, K. Balázsik and M. Bartók, Catal.
Lett., 1998, 52, 81.
Financial support provided by the Michigan Space Grant
Consortium, ACS Petroleum Research Fund and Michigan Techno-
logical University is highly appreciated. Authors thank Prof. D. K.
Bates for valuable discussion.
21 R. Hess, F. Krumeich, T. Mallat and A. Baiker, Catal. Lett., 2004, 92,
141.
C h e m . C o m m u n . , 2 0 0 4 , 9 8 4 – 9 8 5
985