10.1002/ejic.201801471
European Journal of Inorganic Chemistry
Communication
Communication
[22] T. Jahns, R. Schepp, C. Siersdorfer, H. Kaltwasser, Acta Biol.
Hung. 1998, 49, 449-454.
[23] U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer,
Science 1997, 278, 1457-1462.
[24] H. D. Youn, E. J. Kim, J. H. Roe, Y. C. Hah, S. O. Kang,
Biochem. J. 1996, 318, 889-896.
[25] J. Wuerges, J. W. Lee, Y. I. Yim, H. S. Yim, S. O. Kang, K. D.
Carugo, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 8569-8574.
[26] G. D. Straganz, B. Nidetzky, ChemBioChem 2006, 7, 1536-
1548.
[27] F. Al-Mjeni, T. Ju, T. C. Pochapsky, M. J. Maroney,
Biochemistry 2002, 41, 6761-6769.
[28] T. C. Pochapsky, S. S. Pochapsky, T. T. Ju, H. P. Mo, F. Al-
Mjeni, M. J. Maroney, Nat. Struct. Biol. 2002, 9, 966-972.
[29] Y. Dai, P. C. Wensink, R. H. Abeles, J. Biol. Chem. 1999, 274,
1193-1195.
[30] H. P. Mo, Y. Dai, S. S. Pochapsky, T. C. Pochapsky, J. Biomol.
NMR 1999, 14, 287-288.
[31] R. W. Myers, J. W. Wray, S. Fish, R. H. Abeles, J. Biol. Chem.
1993, 268, 24785-24791.
three isolated mimic-substrate adducts the anionic substrate is
bound to the nickel center as bidentate chelate as hypothesized
earlier.[35]
[Ni(L2)(OOCPh)]+ (observed m/z is 531.2289; calcd. m/z is
531.2270; Fig. S25, S26) were present in the ESI-MS (Scheme
3). In addition, the 1H NMR of isolated organic components upon
protonation confirms the presence of benzoic acid (Fig. S27).
To the best of our knowledge, the enzyme-substrate models
reported to date reactive towards dioxygen only when the
substrate is 2-hydroxy-3-oxo-1,3-diphenylprop-1-en-1-olate (A2)
that is closer to the natural substrate, acireductone. Only in one
case where the oxidative cleavage is initiated photochemically,
The authors declare no conflict of interest.
Keywords: Acireductone dioxygenase • Enzyme-substrate
mimic • Nickel complexes • Aerial oxidation • Aliphatic C-C
cleavage
[1] J. B. Sumner, J. Biol. Chem. 1926, 69, 435-441.
[2] N. E. Dixon, C. Gazzola, R. L. Blakeley, B. Zerner, J. Am.
Chem. Soc. 1975, 97, 4131-4133.
[3] P. A. Karplus, M. A. Pearson, R. P. Hausinger, Acc. Chem.
Res. 1997, 30, 330-337.
[4] E. Jabrie, M. B. Carr, R. P. Hausinger, P. A. Karplus, Science
1995, 268, 998-1004.
[5] T. I. Doukov, L. C. Blasiak, J. Seravalli, S. W. Ragsdale, C. L.
Drennan, Biochemistry 2008, 47, 3474-3483.
[6] T. I. Doukov, H. Hemmi, C. L. Drennan, S. W. Ragsdale, J.
Biol. Chem. 2007, 282, 6609-6618.
[7] C. L. Drennan, T. I. Doukov, S. W. Ragsdale, J. Biol. Inorg.
Chem. 2004, 9, 511-515.
[8] T. I. Doukov, T. M. Iverson, J. Seravalli, S. W. Ragsdale, C. L.
Drennan, Science 2002, 298, 567-572.
[9] C. L. Drennan, J. Y. Heo, M. D. Sintchak, E. Schreiter, P. W.
Ludden, Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11973-11978.
[10] H. Dobbek, V. Svetlitchnyi, L. Gremer, R. Huber, O. Meyer,
Science 2001, 293, 1281-1285.
[11] J. Seravalli, W. W. Gu, A. Tam, E. Strauss, T. P. Begley, S. P.
Cramer, S. W. Ragsdale, Proc. Natl. Acad. Sci. U. S. A. 2003,
100, 3689-3694.
[12] P. A. Lindahl, Biochemistry 2002, 41, 2097-2105.
[13] E. L. Maynard, P. A. Lindahl, J. Am. Chem. Soc. 1999, 121,
9221-9222.
[14] M. M. He, S. L. Clugston, J. F. Honek, B. W. Matthews,
Biochemistry 2000, 39, 8719-8727.
[15] Z. D. Su, N. Sukdeo, J. F. Honek, Biochemistry 2008, 47,
13232-13241.
[16] N. Sukdeo, E. Daub, J. F. Honek, in Nickel and Its Surprising
Impact in Nature (Eds.: A. Sigel, H. Sigel, R. K. O. Sigel), John
Wiley & Sons, New York, 2007, pp. 445-471.
[17] A. Volbeda, M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey,
J. C. Fontecilla-Camps, Nature 1995, 373, 580-587.
[18] Y. Higuchi, T. Yagi, N. Yasuoka, Structure 1997, 5, 1671-1680.
[19] Y. Montet, P. Amara, A. Volbeda, X. Vernede, E. C. Hatchikian,
M. J. Field, M. Frey, J. C. FontecillaCamps, Nat. Struct. Biol.
1997, 4, 523-526.
[20] E. Garcin, X. Vernede, E. C. Hatchikian, A. Volbeda, M. Frey, J.
C. Fontecilla-Camps, Structure 1999, 7, 557-566.
[21] P. M. Matias, C. M. Soares, L. M. Saraiva, R. Coelho, J.
Morais, J. Le Gall, M. A. Carrondo, J. Biol. Inorg. Chem. 2001,
6, 63-81.
the
substrate
A4
is
cleaved.[41]
Even
though,
[Ni(BBP)(A3)(H2O)Cl2] undergoes C-C cleavage in the presence
of dioxygen, the mechanism proposed involves binding of oxygen
on Ni whereas the wild-type enzyme-substrate mimic does not go
through such intermediate;[45] owing to the labile aqua ligand
bound to the [Ni(BBP)(A3)(H2O)Cl2], the proposed [Ni-O-O-C-
substrate]‡ intermediate might be possible.[45]
[32] Y. Dai, T. C. Pochapsky, R. H. Abeles, Biochemistry 2001, 40,
6379-6387.
[33] J. W. Wray, R. H. Abeles, J. Biol. Chem. 1995, 270, 3147-3153.
[34] A. R. Deshpande, K. Wagenpfeil, T. C. Pochapsky, G. A.
Petsko, D. Ringe, Biochemistry 2016, 55, 1398-1407.
[35] E. Szajna, A. M. Arif, L. M. Berreau, J. Am. Chem. Soc. 2005,
127, 17186-17187.
[36] E. Szajna-Fuller, K. Rudzka, A. M. Arif, L. M. Berreau, Inorg.
Chem. 2007, 46, 5499-5507.
[37] K. Rudzka, A. M. Arif, L. M. Berreau, Inorg. Chem. 2008, 47,
10832-10840.
Conclusions
In summary, we have shown that two paramagnetic
nickel(II) complexes of macrocyclic N4 ligands are able to perform
as enzyme-substrate mimic for nickel containing acireductone
dioxygenase enzyme. For the first time, aerial oxygen was utilised
in the oxidative cleavage of aliphatic C-C bonds of acireductone
model substrate. Our future works are dedicated towards design
and synthesis of N3O ligands and their Ni(II) complexes with an
anionic O donor as such type of models would be closer to the
natural ligand environment of acireductone dioxygenase active
site.
[38] K. Rudzka, K. Grubel, A. M. Arif, L. M. Berreau, Inorg. Chem.
2010, 49, 7623-7625.
Figure 5. Solid-state structures of [Ni(L2)(A1)](BPh4) (left), [Ni(L2)(A3)](BPh4)
(right) and [Ni(L2)(A4)](BPh4) (bottom). Solvents, counter anions and hydrogens
are omitted for sake of clarity. Selected bond distances [Å] of [Ni(L2)(A1)](BPh4):
Ni-N(4), 1.9877(18); Ni-O(1), 1.9986(15); Ni-N(1), 2.0000(19); Ni-O(2),
2.0023(15); Ni-N(3), 2.3201(19); Ni-N(2), 2.3252(19). Selected bond distances
[Å] of [Ni(L2)(A3)](BPh4): Ni-O(1), 1.978(4); Ni-N(1), 1.980(5); Ni-N(3), 1.983(5);
Ni-O(2), 1.994(4); Ni-N(2), 2.291(4); Ni-N(4), 2.320(4). Selected bond distances
[Å] of [Ni(L2)(A4)](BPh4): Ni-N(1), 1.971(5); Ni-O(2), 1.979(4); Ni-N(3), 1.979(4);
Ni-O(1), 1.995(3); Ni-N(2), 2.290(4); Ni-N(4), 2.293(4). More details are
provided as supporting information (Figures S17-S19; Table S3-S5).
[39] K. Grubel, A. L. Fuller, B. M. Chambers, A. M. Arif, L. M.
Berreau, Inorg. Chem. 2010, 49, 1071-1081.
[40] L. M. Berreau, T. Borowski, K. Grubel, C. J. Allpress, J. P.
Wikstrom, M. E. Germain, E. V. Rybak-Akimova, D. L. Tierney,
Inorg. Chem. 2011, 50, 1047-1057.
[41] C. J. Allpress, A. M. Arif, D. T. Houghton, L. M. Berreau,
Chem.-Eur. J. 2011, 17, 14962-14973.
[42] C. J. Allpress, L. M. Berreau, Coord. Chem. Rev. 2013, 257,
3005-3029.
[43] C. J. Allpress, L. M. Berreau, Eur. J. Inorg. Chem. 2014, 4642-
4649.
[44] K. Grubel, G. K. Ingle, A. L. Fuller, A. M. Arif, L. M. Berreau,
Dalton Trans. 2011, 40, 10609-10620.
[45] R. Ramasubramanian, K. Anandababu, M. Kumar, R.
Mayilmurugan, Dalton Trans. 2018, 47, 4049-4053.
Supporting Information Summary
+
+
R
The experimental details, 1H NMR and ESI-mass spectra,
ORTEPs, crystallographic details are available in the Supporting
R
Ph
Triethylamine
Acetonitrile
Aerial O2
N
N
N
N
N
N
Ph
O
Ph
O
O
Information.
CCDC
1881017
([Ni(L1)Cl2]),
1881018
OH
OH
Ph
Ni
Ni
O
([Ni(L2)(CH3CN)2](BPh4)2×CH3CN), 1881019 ([Ni(L2)(A1)](BPh4)),
1881020 ([Ni(L2)(A3)](BPh4)) and 1881021 ([Ni(L2)(A4)](BPh4))
contain the supplementary crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge
Crystallographic Data Centre.
O
CO
N
N
R
R
Scheme 3. Aliphatic C-C bond cleavage of A2 in the presence of triethylamine
and aerial oxygen at room temperature (R = Bn or tBu).
The oxidative cleavage of model acireductone substrates
(A1-A4) have been carried out using
a
mixture of
Acknowledgments
[Ni(L1)(CH3CN)2](BPh4)2 or [Ni(L2)(CH3CN)2](BPh4)2 and the
substrate precursors HA1-HA4 in addition to 4 equivalents of
triethylamine in acetonitrile under ambient conditions in open air
(Scheme 3). The resulting solutions were analyzed preliminarily
employing ESI-MS and it was observed that the substrates A1,
A3 and A4 did not undergo C-C bond cleavage instead stable
substrate-adduct species were observed (Fig. S20-S22); this is in
line with the observations of Berreau.[36] As expected, the
substrate A2, that is closer to the acireductone (RC(=O)C(-
OH)=CHOH), underwent oxidative C-C bond cleavage utilizing
aerial oxygen, as the envelopes for [Ni(L1)(OOCPh)]+ (observed
m/z is 599.1993; calcd. m/z is 599.1957; Fig. S23, S24) and
Science and Engineering Research Board, Department of
Science and Technology, India (EMR/2015/001350) and Indian
Institute of Technology Kanpur sponsored this research. S.R.
acknowledges the Council of Scientific & Industrial Research
(CSIR, India) for his Senior Research Fellowships. KM thanks
Indian Institute of Technology Kanpur (IITK) for the stipend. PK
acknowledges DST, India for a grant through Fast Track Scheme
for Young Scientists (SB/FT/CS-153/2014).
Conflict of Interest
This article is protected by copyright. All rights reserved.