Communications
1,3-dithianes,[17] which are the examples par excellence of the
aminal system would be easily lithiated in the correct position
and also efficiently cleaved under acidic conditions to liberate
the corresponding acylated compound. We are currently
working on these aspects as well as studying the reaction
mechanism, for which a complex-induced proximity effect[24]
seems likely.
umpolung principle.[18] Like these dithianes, 1 can be used as a
nucleophilic transfer reagent for acyl groups, which makes it a
highly useful compound in organic synthesis. We have
demonstrated this protocol by reacting 1 with several electro-
philes (Scheme 2).
Received: January 9, 2007
Published online: April 20, 2007
Keywords: acylation · aggregation · lithiation · regioselectivity ·
.
umpolung
[1] a) G. Boche, J. C. W. Lohrenz, A. Opel in Lithium Chemistry
(Eds.: A.-M. Sapse, P. von R. Schleyer), Wiley, New York, 1995,
p. 195; b) N. R. Bordwell, R. Vanler, X. Zhang, J. Am. Chem.
Soc. 1991, 113, 9856.
[2] a) D. Seyferth, M. A. Weiner, J. Org. Chem. 1959, 24, 1395;
b) D. J. Peterson, Organomet. Chem. Rev. Sect. A 1972, 7, 295;
c) D. J. Peterson, J. Am. Chem. Soc. 1971, 93, 4027; d) D. J.
Peterson, J. Organomet. Chem. 1970, 21, 63.
Scheme 2. Nucleophilic acylation of carbonyl compounds with 1.
[3] a) R. E. Gawley, Q. Zhang, J. Org. Chem. 1995, 60, 5763; b) J.-P.
Quintard, B. Elissondo, B. Jousseaume, Synthesis 1984, 495;
c) Comprehensive Organic Synthesis (Eds.: B. M. Trost, I.
Fleming), Pergamon, New York, 1991; d) C. Strohmann, B. C.
Abele, Angew. Chem. 1996, 108, 2515; Angew. Chem. Int. Ed.
Engl. 1996, 35, 2378.
Hydrolytic workup under acidic conditions leads to the
expected degradation of the polyaminal-type system, the
TMTAC ring, and liberation of the acylated product. This is
remarkable as this method does thus not require mercury-or
thallium-containing reagents for liberation of the aldehyde—
a notable advantage over the classical Corey–Seebach
method in terms of preparative ease and ecological issues.
The further development of Corey–Seebach reagents is a
topic currently studied by DeglꢀInnocenti, Policino, and
Capperucci, who employed silyl heterocycles as formyl
anion equivalents.[23]
[4] S. V. Kessar, P. Singh, Chem. Rev. 1997, 97, 721.
[5] H. H. Karsch, Chem. Ber. 1996, 129, 483.
[6] J. Arnold, V. Knapp, J. A. R. Schmidt, A. Shafir, J. Chem. Soc.
Dalton Trans. 2002, 3273.
[7] a) M. Schlosser, J. Hartmann, Angew. Chem. 1973, 85, 544;
Angew. Chem. Int. Ed. Engl. 1973, 12, 508; b) W. Bauer, L.
Lochmann, J. Am. Chem. Soc. 1992, 114, 7482.
[8] a) S. Harder, J. Boersma, L. Brandsma, J. A. Kanters, J. Organo-
met. Chem. 1988, 339, 7; b) S. Harder, L. Brandsma, J. Kanters,
A. J. M. Duisenberg, Acta Crystallogr. Sect. C 1987, 43, 1537.
[9] a) D. Seebach, W. Bauer, J. Hansen, T. Laube, W. B. Schweizer,
J. D. Dunitz, J. Chem. Soc. Chem. Commun. 1984, 853; b) H.
Gornitzka, D. Stalke, Organometallics 1994, 13, 4398.
[10] X. Tian, T. Pape, N. W. Mitzel, Z. Naturforsch. B 2004, 59, 1524.
[11] X. Tian, M. Hagemann, R. Fröhlich, T. Pape, N. W. Mitzel, Z.
Naturforsch. B 2006, 61, 1524.
[12] A. Otero, J. Fernµndez-Baeza, J. Tejeda, A. Antiæolo, F. Carrillo-
Hermosilla, E. Díez-Barra, A. Lara-Sµnchez, M. Fernµndez-
López, M. Lanfranchi, M. A. Pellinghelli, J. Chem. Soc. Dalton
Trans. 1999, 3537.
To show that the intermediate products, the hydroxy-
methyl derivatives of TMTAC, can be isolated as stable
compounds, we crystallized the product of the reaction of 1
with benzophenone after careful hydrolysis: 2-(hydroxydi-
phenylmethyl)-1,3,5-trimethyl-1,3,5-triazacyclohexane (3a).
Its molecular structure in the crystal is shown in Figure 5. In
a further test reaction of 1 with bromodiphenylmethane, no
addition of a TMTAC function could be observed, but the
reductive coupling of Ph2CHBr gave 1,1,2,2-tetraphenyl-
ethane in 72% yield.
Clearly the precursors and conditions of these reactions
can be further optimized. The most suitable cyclic (poly)-
[13] a) P. K. Byers, A. J. Canty, R. T. Honeyman, R. M. Claramunt, C.
Lopez, J. L. Lavandera, J. Elguero, Gazz. Chim. Ital. 1992, 122,
341; b) W. Kläui, M. Berghahn, G. Rheinwald, H. Lang, Angew.
Chem. 2000, 112, 2590; Angew. Chem. Int. Ed. 2000, 39, 2464.
¯
[14] Crystal structure determinations. 1: C18H243Li2N9, triclinic, P1,
a = 9.092(1), b = 11.037(1), c = 12.942(1) , a = 77.92(1), b =
82.23(1), g = 80.92(1)8, V= 1247.0(2) 3, Z = 2, 1calcd
=
1.064 gcmÀ3
, l = 0.71073 , 2qmax. = 55.88, T= 192(2) K, m =
0.067 mmÀ1. 16280 measured and 5934 independent reflections
(Rint = 0.067). 269 parameters, R1 = 0.053 for 3387 reflections
with Fo > 4s(Fo) and wR2 = 0.145 for all 5934 data. Max./min.
residual election density À0.18/0.20 eÀ3. 2: C9H20Li2N3, tetrag-
3
¯
onal, I4, a = 17.460(2), c = 8.2195(14) , V= 2505.8(6) , Z = 4,
1calcd = 0.976 gcmÀ3, l = 0.71073 , 2qmax. = 50.08, T= 153(2) K,
m = 0.055 mmÀ1. 10172 measured and 2219 independent reflec-
tions (Rint = 0.039). 130 parameters, R1 = 0.052 for 1881 reflec-
tions with Fo > 4s(Fo) and wR2 = 0.145 for all 2219 data. Max./
minÀ1. residual electron density À0.15/0.23 eÀ3. 3: C19H25N3O,
Figure 5. Molecular structure of 3a. Selected bond lengths [] and
angles [8]: C1-C2 1.531(2), C1-C14 1.583(2), C1-O1 1.422(2); O1-C1-
C14 106.1(1), C2-C1-C14 110.9(1).
4178
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4176 –4179