3442 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 9
Brief Articles
(12) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Efficient
synthesis of dehydroamino acid derivatives. Tetrahedron Lett.
1998, 39, 9575-9578.
(13) Boivin, J.; Henriet, E.; Zard, S. Z. A highly efficient reaction for
the synthesis of esters and for the inversion of secondary
alcohols. J. Am. Chem. Soc. 1994, 116, 9739-9740.
(14) Butler, R. N. Tetrazoles. In Comprehensive Heterocyclic Chem-
istry; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.;
Pergamon: Oxford, 1996; Vol. II, pp 621-678.
(15) Butler, R. N. Tetrazoles. In Comprehensive Heterocyclic Chem-
istry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford,
1984; Vol. I, pp 791-838.
(16) Begtrup, M.; Elguero, J.; Faure, R.; Camps, P.; Estopa´, C.;
Ilavsky´, D.; Fruchier, A.; Marzin, C.; de Mendoza, J. Effect of
N-substituents on the 13C NMR parameters of azoles. Magn.
Reson. Chem. 1988, 26, 134-151.
(17) Honore´, T.; Nielsen, M. Complex structure of quisqualate-
sensitive glutamate receptors in rat cortex. Neurosci. Lett. 1985,
54, 27-32.
16 h. The solvent was removed in vacuo, and the residue was
dissolved in water (20 mL). The aqueous phase was extracted
with EtOAc (4 × 20 mL), the combined organic phases were
washed with brine (10 mL) and dried (MgSO4), and the solvent
was removed in vacuo to afford a colorless oil. According to
1H NMR a 1:2 mixture of the 1-isomer 21a and 2-isomer 22a
was obtained. FC (pentane/EtOAc 6:1) gave 21a (85 mg, 15%)
and 22a (318 mg, 56%) as colorless oils.
(RS)-2-Amino-3-[3-hydroxy-5-(2-ethyl-2H-5-tetrazolyl)-
4-isoxazolyl]propionic Acid (5a). The experimental proce-
dure was according to Scheme 2. A solution of 22a (333 mg,
0.59 mmol) in aqueous HBr (48%, 2 mL) was refluxed in a
preheated 140 °C oil bath for 20 min. The solution was cooled,
the solvent was removed in vacuo, and the residue was
evaporated with water (3 × 5 mL). The residue was purified
by reversed-phase HPLC and recrystallized (water) to give 5a
(115 mg, 73%) as white crystals: mp >220 °C. Anal. (C9H12N6O4)
C, H, N.
(18) Braitman, D. J.; Coyle, J. T. Inhibition of [3H]kainic acid receptor
binding by divalent cations correlates with ion affinity for the
calcium channel. Neuropharmacology 1987, 26, 1247-1251.
(19) Sills, M. A.; Fagg, G.; Pozza, M.; Angst, C.; Brundish, D. E.; Hurt,
S. D.; Wilusz, E. J.; Williams, M. [3H]CGP 39653: a new
N-methyl-D-aspartate antagonist radioligand with low nano-
molar affinity in rat brain. Eur. J. Pharmacol. 1991, 192, 19-
24.
Acknowledgment. This work was supported by
grants from the Lundbeck Foundation and the Novo
Nordisk Foundation.
Supporting Information Available: NMR for all com-
pounds, experimental procedures for 4, 5, 7-10, 12-15, 17,
and 20-23, and experimental details for pharmacology and
molecular modeling. This material is available free of charge
(20) Ransom, R. W.; Stec, N. L. Cooperative modulation of [3H]MK801
binding to the N-methyl-D-aspartate receptor ion channel com-
plex by L-glutamate, glycine and polyamines. J. Neurochem.
1988, 51, 830-836.
(21) Madsen, U.; Frølund, B.; Lund, T. M.; Ebert, B.; Krogsgaard-
Larsen, P. Design, synthesis and pharmacology of model com-
pounds for indirect elucidation of the topography of AMPA
receptor sites. Eur. J. Med. Chem. 1993, 28, 791-800.
(22) Harrison, N. L.; Simmonds, M. A. Quantitative studies on some
antagonists of N-methyl-D-aspartate in slices of rat cerebral
cortex. Br. J. Pharmacol. 1985, 84, 381-391.
(23) Bjerrum, E. J.; Kristensen, A. S.; Pickering, D. S.; Greenwood,
J. R.; Nielsen, B.; Liljefors, T.; Schousboe, A.; Bra¨uner-Osborne,
H.; Madsen, U. Design, synthesis, and pharmacology of a highly
subtype-selective GluR1/2 agonist, (RS)-2-amino-3-(4-chloro-3-
hydroxy-5-isoxazolyl)propionic acid (Cl-HIBO). J. Med. Chem.
2003, 46, 2246-2249.
(24) Macromodel 9.0, First Discovery 3.5, Glide 3.5; Schro¨dinger, Inc.
(1500 S. W. First Avenue, Suite 1180, Portland, OR 97201), 2005.
(25) Johansen, T. N.; Greenwood, J. R.; Frydenvang, K.; Madsen, U.;
Krogsgaard-Larsen, P. Stereostructure-activity studies on ago-
nists at the AMPA and kainate subtypes of ionotropic glutamate
receptors. Chirality 2003, 15, 167-179.
(26) Cardellicchio, C.; Fiandanese, V.; Marchese, G.; Naso, F.;
Ronzini, L. Synthesis of R-amino acid derivatives by copper(I)-
catalyzed conjugate addition of Grignard reagents to methyl
2-acetamidoacrylate. Tetrahedron Lett. 1985, 26, 4387-4390.
(27) Vogensen, S. B.; Greenwood, J. R.; Varming, A. R.; Brehm, L.;
Pickering, D. S.; Nielsen, B.; Liljefors, T.; Clausen, R. P.;
Johansen, T. N.; Krogsgaard-Larsen, P. A stereochemical anor-
maly: the cyclised (R)-AMPA analogue (R)-3-hydroxy-4,5,6,7-
tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid [(R)-5-
HPCA] resembles (S)-AMPA at glutamate receptors. Org. Bio-
mol. Chem. 2003, 1, 1-9.
(28) Nielsen, B.; Fisker, H.; Ebert, B.; Madsen, U.; Curtis, D. R.;
Krogsgaard-Larsen, P.; Hansen, J. J. Enzymatic resolution of
AMPA by use of R-chymotrypsin. Bioorg. Med. Chem. Lett. 1993,
3, 107-114.
(29) Lunn, G.; Sansone, E. B. Destruction of Hazardous Chemicals
in the Laboratory; Wiley: New York, 1994.
References
(1) Bra¨uner-Osborne, H.; Egebjerg, J.; Nielsen, E. Ø.; Madsen, U.;
Krogsgaard-Larsen, P. Ligands for glutamate receptors: design
and therapeutic prospects. J. Med. Chem. 2000, 43, 2609-2645.
(2) Dingledine, R.; Borges, K.; Bowie, D.; Traynelis, S. F. The
glutamate receptor ion channels. Pharmacol. Rev. 1999, 51,
7-61.
(3) Safferling, M.; Tichelaar, W.; Ku¨mmerle, G.; Juoppila, A.;
Kuusinen, A.; Keina¨nen, K.; Madden, D. R. First images of a
glutamate receptor ion channel: oligomeric state and molecular
dimensions of GluRB homomers. Biochemistry 2001, 40, 13948-
13953.
(4) Armstrong, N.; Sun, Y.; Chen, G.-Q.; Gouaux, E. Structure of a
glutamate-receptor ligand-binding core in complex with kainate.
Nature 1998, 395, 913-917.
(5) Armstrong, N.; Gouaux, E. Mechanisms for activation and
antagonism of an AMPA-sensitive glutamate receptor: crystal
structures of the GluR2 ligand binding core. Neuron 2000, 28,
165-181.
(6) Hogner, A.; Kastrup, J. S.; Jin, R.; Liljefors, T.; Mayer, M. L.;
Egebjerg, J.; Larsen, I. K.; Gouaux, E. Structural basis for AMPA
receptor activation and ligand selectivity: crystal structures of
five agonist complexes with the GluR2 ligand-binding core. J.
Mol. Biol. 2002, 322, 93-109.
(7) Sun, Y.; Olson, R.; Horning, M.; Armstrong, N.; Mayer, M.;
Gouaux, E. Mechanism of glutamate receptor desensitization.
Nature 2002, 417, 245-253.
(8) Hogner, A.; Greenwood, J. R.; Liljefors, T.; Lunn, M.-L.; Egebjerg,
J.; Larsen, I. K.; Gouaux, E.; Kastrup, J. S. Competitive
antagonism of AMPA receptors by ligands of different classes:
crystal structure of ATPO bound to the GluR2 ligand-binding
core, in comparison with DNQX. J. Med. Chem. 2003, 46, 214-
221.
(9) Bang-Andersen, B.; Lenz, S. M.; Skjærbæk, N.; Ebert, B.;
Hansen, H. O.; Ebert, B.; Bøgesø, K. P.; Krogsgaard-Larsen, P.
Heteroaryl analogues of AMPA. Synthesis and quantitative
structure-activity relationships. J. Med. Chem. 1997, 40, 2831-
2842.
(30) Hermit, M. B.; Greenwood, J. R.; Nielsen, B.; Bunch, L.;
Jørgensen, C. G.; Vestergaard, H. T.; Stensbøl, T. B.; Sanchez,
C.; Krogsgaard-Larsen, P.; Madsen, U.; Bra¨uner-Osborne, H.
Ibotenic acid and thioibotenic acid: a remarkable difference in
activity at group III metabotropic glutamate receptors.
(31) Bunch, L.; Johansen, T. H.; Bra¨uner-Osborne, H.; Stensbøl, T.
B.; Johansen, T. N.; Krogsgaard-Larsen, P.; Madsen, U. Syn-
thesis and receptor binding affinity of new selective GluR5
ligands. Bioorg. Med. Chem. 2001, 9, 875-879.
(10) Vogensen, S. B.; Jensen, H. S.; Stensbøl, T. B.; Frydenvang, K.;
Bang-Andersen, B.; Johansen, T. N.; Egebjerg, J.; Krogsgaard-
Larsen, P. Resolution, configurational assignment, and enantio-
pharmacology of 2-amino-3-[3-hydroxy-5-(2-methyl-2H-tetrazol-
5-yl)isoxazol-4-yl]propionic acid, a potent GluR3- and GluR4-
preferring AMPA receptor agonist. Chirality 2000, 12, 705-713.
(11) Frey, M.; Ja¨ger, V. Synthesis of N-substituted muscimol deriva-
tives including N-glycylmuscimol. Synthesis 1985, 12, 1100-
1104.
JM050014L