Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
1
April 2020.
2
3
4
5
S. Wagner, R. Sommer, S. Hinsberger, C. Lu, R. W. Hartmann,
M. Empting and A. Titz, J. Med. Chem., 2016, 59, 5929–5969.
A. E. Clatworthy, E. Pierson and D. T. Hung, Nat. Chem. Biol., 2007, 3,
5
41–548.
M. B. Calvert, V. R. Jumde and A. Titz, Beilstein J. Org. Chem., 2018,
4, 2607–2617.
J. Meiers, E. Siebs, E. Zahorska and A. Titz, Curr. Opin. Chem. Biol.,
019, 53, 51–67.
1
2
6
7
S. Cecioni, A. Imberty and S. Vidal, Chem. Rev., 2015, 115, 525–561.
K. Winzer, C. Falconer, N. C. Garber, S. P. Diggle, M. Camara and
P. Williams, J. Bacteriol., 2000, 182, 6401–6411.
Fig. 4 Molecular dynamics simulations of C5m, E5m; C5p; E5p: (a)
distribution of Gal:C1Á Á ÁGal:C1 distances of compounds in the free state
8 S. P. Diggle, R. E. Stacey, C. Dodd, M. C ´a mara, P. Williams and
K. Winzer, Environ. Microbiol., 2006, 8, 1095–1104.
(
solid lines) and in complex with LecA (dashed lines). (b) Distribution of
distances between His50 and the phenyl aglycon of ligands in complex
with LecA (solid lines for LecA protein chain A, dashed lines for chain B).
9 D. Tielker, S. Hacker, R. Loris, M. Strathmann, J. Wingender, S. Wilhelm,
F. Rosenau and K. E. Jaeger, Microbiology, 2005, 151, 1313–1323.
0 J. Rodrigue, G. Ganne, B. Blanchard, C. Saucier, D. Gigu `e re,
T. C. Shiao, A. Varrot, A. Imberty and R. Roy, Org. Biomol. Chem.,
1
(c–f) Snapshot from trajectories of C5p (c), E5p (d), C5m (e), and two
snapshots of E5m (f) indicating the conformational change of LecA.
2013, 11, 6906–6918.
1
1
1 I. Joachim, S. Rikker, D. Hauck, D. Ponader, S. Boden, R. Sommer,
L. Hartmann and A. Titz, Org. Biomol. Chem., 2016, 14, 7933–7948.
2 R. Sommer, S. Wagner, K. Rox, A. Varrot, D. Hauck, E. C. Wamhoff,
J. Schreiber, T. Ryckmans, T. Brunner, C. Rademacher, R. W. Hartmann,
M. Br o¨ nstrup, A. Imberty and A. Titz, J. Am. Chem. Soc., 2018, 140,
2537–2545.
galactose pentaacetate. These simple and rapidly accessible
divalent inhibitors B5m–F5m and B5p–F5p have comparable
or superior activity to the previously reported and structurally
complex di- and multivalent LecA ligands. Monovalent analogs
A5m and A5p showed binding to LecA in SPR and ITC experi-
1
3 R. Sommer, K. Rox, S. Wagner, D. Hauck, S. S. Henrikus, S. Newsad,
T. Arnold, T. Ryckmans, M. Br ¨o nstrup, A. Imberty, A. Varrot,
R. W. Hartmann and A. Titz, J. Med. Chem., 2019, 62, 9201–9216.
ments in the low micromolar range (K
d
= 2.7–6.1 mM). Divalent 14 S. Wagner, D. Hauck, M. Hoffmann, R. Sommer, I. Joachim,
R. M u¨ ller, A. Imberty, A. Varrot and A. Titz, Angew. Chem., Int. Ed.,
display of these epitopes in B5m–F5m and B5p–F5p boosted
binding affinity with LecA to low nanomolar values. Molecular
dynamics simulations gave insights into the interplay of linker
geometry and length for an optimal divalent binding. To the
2
017, 56, 16559–16564.
1
1
1
1
1
5 R. U. Kadam, D. Garg, J. Schwartz, R. Visini, M. Sattler, A. Stocker,
T. Darbre and J.-L. Reymond, ACS Chem. Biol., 2013, 8, 1925–1930.
6 M. Mammen, S.-K. Choi and G. M. Whitesides, Angew. Chem., Int.
Ed., 1998, 37, 2754–2794.
7 K. Drickamer and M. E. Taylor, Curr. Opin. Struct. Biol., 2015, 34,
26–34.
8 A. Bernardi, J. Jim ´e nez-Barbero and A. Casnati, et al., Chem. Soc.
Rev., 2013, 42, 4709–4727.
9 G. Cioci, E. P. Mitchell, C. Gautier, M. Wimmerov ´a , D. Sudakevitz,
S. P ´e rez, N. Gilboa-Garber and A. Imberty, FEBS Lett., 2003, 555,
d
best of our knowledge, compound B5p with a K of 10.8 nM is
the most potent divalent LecA ligand reported to date with
confirmed selectivity for LecA over galectin-1. Due to the
simplicity of our synthetic design and readily accessible build-
ing blocks, further fine tuning and optimization of drug-like
properties can be readily implemented. Future optimization of
these compounds targeting LecA may provide a treatment of
biofilm-associated P. aeruginosa infections.
The authors are grateful to Dirk Hauck (HIPS) for excellent
technical assistance and Varsha R. Jumde (HIPS) for assisting with
DCC. M. L. acknowledges a EU H2020 Marie Sklodowska-Curie
grant (795605). Computations were run on GRICAD infrastructure,
HPC-EUROPA3 project (H2020-INFRAIA-2016-1-730897), and
EPCC at the University of Edinburgh, Scotland, and HPC resources
from GENCI-IDRIS (Grant 2019-A0070711040). A. T. thanks the
European Research Council (ERC Starting Grant, Sweetbullets)
2
97–301.
2
0 J. E. Gestwicki, C. W. Cairo, L. E. Strong, K. A. Oetjen and L. L. Kiessling,
J. Am. Chem. Soc., 2002, 124, 14922–14933.
21 F. Pertici and R. J. Pieters, Chem. Commun., 2012, 48, 4008–4010.
2
2 G. Yu, A. C. Vicini and R. J. Pieters, J. Org. Chem., 2019, 84,
470–2488.
2
2
3 R. Visini, X. Jin, M. Bergmann, G. Michaud, F. Pertici, O. Fu, A. Pukin,
T. R. Branson, D. M. E. Thies-Weesie, J. Kemmink, E. Gillon, A. Imberty,
A. Stocker, T. Darbre, R. J. Pieters and J. L. Reymond, ACS Chem. Biol.,
2
015, 10, 2455–2462.
2
2
4 A. Novoa, T. Eierhoff, J. Topin, A. Varrot, S. Barluenga, A. Imberty,
W. R ¨o mer and N. Winssinger, Angew. Chem., Int. Ed., 2014, 53,
8885–8889.
5 S.-F. Huang, C.-H. Lin, Y.-T. Lai, C.-L. Tsai, T.-J. R. Cheng and S.-
K. Wang, Chem. – Asian J., 2018, 13, 686–700.
and Deutsche Forschungsgemeinschaft (Ti756/5-1). S. Y. acknowl- 26 M. Bergmann, G. Michaud, R. Visini, X. Jin, E. Gillon, A. Stocker,
A. Imberty, T. Darbre and J. L. Reymond, Org. Biomol. Chem., 2016,
edges a RISE fellowship, German Academic Exchange Service
14, 138–148.
DAAD. The work was supported by the ANR/DFG French-
German GLYCOMIME project (ANR-AAPG-2017, DFG Ti756/5-1).
A. I. and S. K. acknowledge support from Glyco@Alps (ANR-15-
IDEX02), Labex Arcane/CBH-EUR-GS (ANR-17-EURE-0003). A. K. H.
H. gratefully acknowledges the ERC Starting Grant (757913).
2
2
2
7 M. Mondal and A. K. H. Hirsch, Chem. Soc. Rev., 2015, 44,
2455–2488.
8 A. M. Hartman, R. M. Gierse and A. K. H. Hirsch, Eur. J. Org. Chem.,
2019, 3581–3590.
9 I. Cumpstey, E. Salomonsson, A. Sundin, H. Leffler and U. J. Nilsson,
ChemBioChem, 2007, 8, 1389–1398.
Chem. Commun.
This journal is © The Royal Society of Chemistry 2020