P. Gizzi, A. Pasc, N. Dupuy, S. Parant, B. Henry, C. Gérardin
FULL PAPER
3
(CH2OCO), 120.3 (CH=C), 130.2 (C=NH), 147 (C=CH), 170 and 0.90 (t, J = 6.5 Hz, 3 H, CH3), 1.2–1.4 (m, CH2 fatty chain), 1.62
3
176 (C=O) ppm. C21H40Cl2N5O4 (500.28): calcd. C 50.41, H 8.06,
N 14.11; found C 50.61, H 7.87, N 13.92.
(m, 2 H, CH2 in β of CO), 2.21 (t, J = 7.5 Hz, 2 H, CH2 in α of
CO), 3.29 (m, 2 H, CH2 Im), 3.41 (t, 3J = 5 Hz, 2 H, CH2NH),
3.78 (s, 2 H, CH2 Gly), 4.12 (s, 2 H, CH2NH3+) 4.34 (m, 2 H,
CH2OCO) 4.45 (m, 1 H, CH His) 7.42 (s, 1 H, CH=C), 7.83 (s, 1
H, CH=N) ppm. 13C NMR (100.58 MHz, CDCl3): δ = 15.3 (CH3),
23–36 (CH2 fatty chain and CH2 Gly), 44.1 (CHNH3+), 52.3 (CH
His), 55.3 (CH2NHCO), 63.6 (CH2OCO), 120.3 (CH=C), 130.2
(C=NH), 147.1 (C=CH) 170 and 176 (C=O) ppm. C22H40Cl2N6O5
(542.29): calcd. C 48.72, H 7.43, N 15.58; found C 48.62, H 7.38,
N 15.32.
3c: Yield: 2.51 g, 78%. IR, H NMR, and 13C NMR spectral data
are identical to those of 3b. C15H27Cl2N5O4 (412.32): calcd. C
43.70, H 6.60; found C 44.01, H 6.45.
1
3d: Yield: 3.56 g, 84%. M.p. 150 °C. 1H NMR (400 MHz,
CD3OD): δ = 0.90 (t, 3J = 6.5 Hz, 3 H, CH3), 1.2–1.4 (m, CH2
fatty chain), 1.62 (m, 2 H, CH2 in β of CO), 2.48 (t, J = 7.5 Hz,
3
3
2 H, CH2 in α of CO), 2.72 (t, J = 7.5 Hz, 2 H, CH2NH), 3.15–
3.30 (m, 4 H, CH2 Im and CH2NHCO), 3.42 and 3.57 (t, 3J =
1
4c: Yield: 2.85 g, 80%. IR, H NMR, and 13C NMR spectral data
5 Hz, 2 H, CH2O) 3.70 (t, J = 7.5 Hz, 2 H, CH2NH3+) 4.25 (t, J
3
3
are identical to those of 4b.C16H28Cl2N6O5 (455.34): calcd. C 42.20,
H 6.20; found C 42.25, H 6.45.
= 6.5 Hz, 2 H, CH2OCO) 4.75 (t, 3J = 7 Hz, 1 H, CH-NH3+), 7.41
(s,
1 H, CH=C), 7.88 (s, 1
H, CH=N) ppm. 13C NMR
4d: Yield: 3.73 g, 82%. M.p. 152 °C. 1H NMR (400 MHz,
CD3OD): δ = 0.90 (t, 3J = 6.5 Hz, 3 H, CH3), 1.2–1.4 (m, CH2
(100.58 MHz, CDCl3): δ = 15.3 (CH3), 23–36 (CH2 fatty chain),
37.7 (CH2NH3+), 39.2 (CH2OCO) 52.3 (CHNH3+), 63.5
(CH2NHCO), 70 and 71 (CH2O) 120.1 (CH=C), 130.2 (C=NH),
147.1 (C=CH) 170 and 176 (C=O) ppm. C23H43Cl2N5O5 (543.54):
calcd. C 50.82, H 7.97, N 12.96; found C 50.91, H 7.88, N 12.89.
3
fatty chain), 1.62 (m, 2 H, CH2 in β of CO), 2.21 (t, J = 7.5 Hz,
3
2 H, CH2 in α of CO), 3.30 (m, 2 H, CH2 Im), 3.45 (t, J = 5 Hz,
3
CH2NHCO) 3.58 and 3.71 (t, J = 5 Hz, 4 H, CH2O) 3.77 (s, 2 H,
+
CH2 Gly) 3.99 (s, 2 H, CH2NH3 Gly) 4.32 (m, 2 H, CH2OCO)
3e: Yield: 2.57 g, 72%. IR, H NMR, and 13C NMR spectral data
are identical to those of 3d.C17H31Cl2N5O5 (456.37): calcd. C
44.74, H 6.85; found C 45.10, H 6.45.
1
4.82 (m, 1 H, CH His), 7.44 (s, 1 H, CH=C), 7.84 (s, 1 H, CH=N)
ppm. 13C NMR (100.58 MHz, CDCl3): δ = 15.3 (CH3), 23–36 (CH2
fatty chain and CH2 Gly) 39.2 (CH2OCO) 43.7 (CHNH3+) 53.3
(CH His) 63.5 (CH2NHCO) 70 and 71 (CH2O) 120.1 (CH=C)
130.0 (C=NH), 147.0 (C=CH) 170–176 (C=O) ppm.
C24H44Cl2N6O6 (583.50): calcd. C 49.40, H 7.60, N 14.40; found C
48.92, H 7.48, N 14.12.
3f: Yield: 3.98 g, 87%. M.p. 220 °C. IR (KBr): ν = 3245, 2916,
˜
1
1681, 1643, 1623 cm–1. H NMR (400 MHz, CD3OD): δ = 0.94 (t,
3J = 6.5 Hz, 3 H, CH3), 1.33 (m, CH2 fatty chain), 1.63 (m, 2 H,
3
CH2 in β of CO), 2.23 (t, J = 7 Hz, 2 H, CH2 in α of CO), 2.74
(m, 2 H, CH2 in β of NH3+), 3.20–3.40 (m, 8 H, 2 CH2NH, CH2
Im and CH2NH3+), 3.58 (t, 3J = 5 Hz, 2 H, CH2), 3.66 (s, 4 H,
CH2), 4.75 (t, 3J = 6.6 Hz, 1 H, CH), 7.44 (s, 1 H, CH=C), 8.89 (s,
1 H, CH=N) ppm. 13C NMR (100.58 MHz, CDCl3): δ = 15.5
(CH3), 24–38 (CH2), 41.4 (CH2-NH3+), 54.5 (CH), 71–72 (4 CH2-
O), 119.2 (CH=C), 131.7 (CH=N), 135.7 (Cq), 172–177 (3 C=O)
ppm. C25H48Cl2N6O5 (583.60): calcd. C 51.45, H 8.29, N 14.40;
found C 50.97, H 8.18, N 14.12. C25H48Cl2N5O5 (586.96): calcd. C
51.15, H 8.29, N 14.40; found C 50.97, H 8.18, N 14.12.
1
4e: Yield: 2.81 g, 72%. IR, H NMR, and 13C NMR spectral data
are identical to those of 4d. C18H32Cl2N6O6 (499.39): calcd. C
43.29, H 6.46; found C 43.76, H 6.82.
4f: Yield: 4.22 g, 86%. M.p. 219 °C. IR (KBr): ν = 3286, 2916,
˜
1685–1620 cm–1 (4 νCO). H NMR (400 MHz, CD3OD): δ = 0.89
1
(t, 3J = 6.5 Hz, 3 H, CH3), 1.20–1.40 (m, CH2 fatty chain), 1.60
(m, 2 H, CH2 in β of CO), 2.23 (t, 3J = 7 Hz, 2 H, CH2 in α of
CO), 3.10–3.45 (m, 6 H, 2 CH2NH and CH2 Im), 3.50–3.60 (m, 4
H, CH2 in β of NH), 3.63 (s, 4 H, CH2O), 3.81 (s, 2 H, CH2 Gly),
1
3g: Yield: 4.17 g. 87%. M.p. 198 °C. IR, H NMR, and 13C NMR
3.94 (s, 2 H, CH2NH3+), 4.28 (t, J = 6.7 Hz, 1 H, CH), 7.42 (s, 1
3
spectral data are identical to those of 3f. C27H52Cl2N6O5 (611.65):
calcd. C 53.02, H 8.57, N 13.74; found C 52.92, H 8.49, N 13.68.
H, CH=C), 8.83 (s, 1 H, CH=N) ppm. 13C NMR (100.58 MHz,
CDCl3): δ = 15.2 (CH3), 24–38 (CH2), 44.5 (CH2-NH3+), 54.5
(CH), 71–72 (4 CH2-O), 119.4 (CH=C), 131.8 (CH=N), 137.2 (Cq),
169–178 (4 C=O) ppm. C26H49Cl2N7O6 (626.62): calcd. C 49.84, H
7.88, 15.65; found C 50.07, H 7.99, N 15.76. C26H49Cl2N7O6
(630.05): calcd. C 49.56, H 7.84, N 15.65; found C 50.07, H 7.99,
N 15.76.
1
3h: Yield: 4.61 g, 92%. M.p. 224 °C. IR, H NMR, and 13C NMR
spectral data are identical to those of 3f. C29H56Cl2N6O5 (639.70):
calcd. C 54.45, H 8.82, N 13.14; found C 54.62, H 8.92, N 13.29.
Alkyl-amido-ethoxy-ethoxy-ethylamidoglycyl-glycyl-histidine Dihy-
drochloride (4a–h): The procedure was similar to that used for the
preparation of 3. Boc-glycyl-glycine was used to replace Boc-β-Ala-
nine.
4g: Yield: 4.36 g, 85%. M.p. 210 °C. IR, H NMR, and 13C NMR
spectral data are identical to those of 4f. C28H53Cl2N7O6 (654.68):
1
calcd. C 51.37, H 8.16, N 14.98; found C 51.02, H 8.36, N 14.88.
4a: Yield: 3.70 g, 81%. M.p. 140 °C. IR (KBr): ν = 3225, 2921,
˜
1739, 1683, 1653, 1618 cm–1. 1H NMR (400 MHz, CD3OD): δ =
1
4h: Yield: 4.82 g, 90%. M.p. 169 °C. IR, H NMR, and 13C NMR
3
0.92 (t, J = 6.5 Hz, 3 H, CH3) 1.2–1.4 (m, 12 H, 6CH2) 1.61 (m,
spectral data are identical to those of 4f. C30H57Cl2N7O6 (682.73):
calcd. C 52.78, H 8.42, N 14.36; found C 52.67, H 8.48, N 14.26.
3
2 H, CH2 in β of CO) 2.22 (t, J = 7.5 Hz, 2 H, CH2CO) 3.35 (m,
3
3
2 H, CH2 Im) 3.45 (t, J = 5 Hz, 2 H, CH2O) 3.58 and 3.71 (t, J
Supporting Information (see footnote on the first page of this arti-
cle): Dependence of relative fluorescence intensity I/I0 of pyrene on
different “amide–ester” surfactant concentrations; hydrolysis of the
“amide–ester” trimoduli amphiphiles as followed by 1H NMR
+
= 5 Hz, 4 H, CH2O) 3.77 (s, 2 H, CH2 Gly) 3.99 (s, 2 H, CH2NH3
Gly) 4.32 (m, 2 H, CH2OCO) 4.79 (m, 1 H, CH His) 7.54 and 7.74
(s, 1 H, CH Im) ppm. 13C NMR (100.58 MHz, CDCl3): δ = 15.2
(CH3), 24–36 (CH2 fatty chain), 42.6 (CH2NHCO) 44.2 (CH2-
1
spectroscopy; temperature-dependent H NMR spectra of 3h.
+
NH3 Gly), 53.8 (CH His), 66.8 (CH2OCO) 71 and 72 (CH2-O),
119.8 (CH=C), 131.4 (CH=N), 135.9 (Cq), 169 and 172 (4 C=O)
ppm. C24H44Cl2N6O6 (586.62): calcd. C 49.14, H 7.56; found C
49.40, H 7.60.
Acknowledgments
4b: Yield: 3.42 g, 81%. M.p. 149 °C. IR (KBr): ν = 3380, 2921, This work is supported by the Institute Jean Barriol, France (pro-
˜
1738, 1686, 1649, 1626 cm–1. 1H NMR (400 MHz, CD3OD): δ = ject PRIME 2008). We would like to thank the “Ministère de l’En-
3962
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 3953–3963