3072
A. R. Kore et al. / Tetrahedron Letters 53 (2012) 3070–3072
Woodroofe, C. C.; Lacenere, J.; Quake, S. R.; Stoltz, B. M. Chem. Commun. 2005,
4551–4553; (c) Vailyeva, S. V.; Budilkin, B. I.; Konevetz, D. A.; Silnikov, V. N.
Nucleosides, Nucleotides Nucleic Acids 2011, 30, 753–767.
with propargylamine that allows an efficient gram-scale synthesis
of 5-aminopropargyl-uridine-50-triphosphates in good yields with
high purities. The catalytic reaction is highly chemoselective and
tolerates a wide variety of functional groups present in the sub-
strates. The presence of hydrophobic counter ion in 5-iodouridine
triphosphate is crucial for the successful Sonogashira coupling
reaction. Further work is in progress to extend the scope of this
reaction and to study the application of these 5-aminopropargyl
nucleotides.
10. Kielkowski, P.; Pohl, R.; Hocek, M. J. Org. Chem. 2011, 76, 3457–3462.
11. Kore, A. R.; Shanmugasundaram, M. Tetrahedron Lett. 2012, 53, 2530–2532.
12. (a) Kore, A. R.; Shanmugasundaram, M. Bioorg. Med. Chem. Lett. 2008, 18, 880–
884; (b) Kore, A. R.; Shamugasundaram, M.; Vlassov, A. V. Bioorg. Med. Chem.
Lett. 2008, 18, 4828–4832; (c) Kore, A. R.; Shanmugasundaram, M.; Charles, I.;
Vlassov, A. V.; Barta, T. J. J. Am. Chem. Soc. 2009, 31, 6364–6365; (d) Kore, A. R.;
Charles, I.; Shanmugasundaram, M. Curr. Org. Chem. 2010, 14, 1083–1098.
13. Preparation of aminopropargyl-dUTP 3a: To a stirred solution of 5-iodo-20-
deoxyuridine-50-triphosphate 2a (5.0 g, 5.58 mmol) in dry DMF (80 mL),
palladium tetrakis triphenylphosphine (2.58 g, 2.23 mmol), copper iodide
(0.90 g, 4.73 mmol), propargylamine (0.61 g, 11.16 mmol), and triethylamine
(1.69 g, 16.74 mmol) were added and the reaction mixture was stirred at room
temperature for 4 h. The reaction mixture was poured into 500 mL of water
and stirred for 1 h. The reaction mixture was filtered. The collected aqueous
solution was adjusted to pH 6.5 and loaded on a DEAE Sepharose column. The
desired product was eluted using a linear gradient of 0–1 M TEAB and the
fractions containing the product were pooled, evaporated, and co-evaporated
with water (3 ꢀ 1000 mL). The final TEA salt residue was dissolved in water
(100 mL) and then poured into a solution of sodium perchlorate (10.0 g) in
acetone (700 mL). The resulting mixture was centrifuged and the supernatant
liquid was discarded. The solid was washed with acetone (200 mL) and the
resulting solid was dried in vacuum to give a sodium salt of aminopropargyl-
dUTP 3a (2.78 g, 85%). 1H NMR (D2O, 400 MHz) d 8.46 (s, 1H), 6.29 (t, J = 6.0 Hz,
1H), 4.65 (m, 1H), 4.32–4.19 (m, 3H), 4.02 (s, 2H), 2.44 (m, 2H); 31P NMR (D2O,
162 MHz) d ꢁ6.53 (d, J = 19.8 Hz, 1P), ꢁ10.19 (d, J = 20.1 Hz, 1P), ꢁ20.83 (t,
J = 20.3 Hz, 1P); MS (m/z): 520 [MꢁH]+.
References and notes
1. Blackburn, G. M.; Gait, M. J.; Loakes, D.; Williams, D. M. Nucleic Acids in
Chemistry and Biology; Royal Society of Chemistry: London, 2006.
2. Vaghefi, M. Nucleoside Triphosphates and their Analogs; CRC Press, Taylor and
Francis Group: Boca Raton, 2005.
3. Cox, W. G.; Singer, V. L. Biotechniques 2004, 36, 114–122.
4. Heng, H. H.; Spyropoulos, B.; Moens, P. B. BioEssays 1997, 19, 75–84.
5. (a) Brown, P. O.; Botstein, D. Nat. Genet. 1999, 21, 33–37; (b) Lockhart, D. J.;
Winzeler, E. A. Nature 2000, 405, 827–836.
6. Hanna, M. M.; Yuriev, E.; Zhang, J.; Riggs, D. L. Nucleic Acids Res. 1999, 27, 1369–
1376.
7. (a) Agrofoglio, L. A.; Gillaizeau, I.; Saito, Y. Chem. Rev. 2003, 103, 1875–1916; (b)
Chinchilla, R.; Nájera, C. Chem. Soc. Rev. 2011, 40, 5084–5121.
8. (a) Jager, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum, O.;
Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071–15082; (b) Borsenberger, V.;
Kukwikila, M.; Howorka, S. Org. Biomol. Chem. 2009, 7, 3826–3835.
9. (a) Matulic-Adamic, J.; Daniher, A. T.; Karpeisky, A.; Haeberli, P.; Sweedler, D.;
Beigelman, L. Bioorg. Med. Chem. Lett. 2000, 10, 1299–1302; (b) Garg, N. K.;
14. Bahlaouan, Z.; Thibonnet, J.; Duchêne, A.; Parrain, J.-L.; Elhilali, M.; Abarbri, M.
Synlett 2011, 2509–2512.