Journal of Physical Organic Chemistry p. 47 - 53 (1995)
Update date:2022-08-11
Topics:
Yu, T.
Mebel, A. M.
Lin, M. C.
The association of C6H5O with NO was studied with the cavity-ring-down method by directly monitoring the decay of C6H5O in the presence of varying, excess amounts of NO.The bimolecular rate constant determined in the temperature range 297-373 K can be effectively represented by k1=10-12.12+/-0.24e(194+/-185)/T cm3 molecule-1 with a negative activation energy of 0.8 kcal mol-1 (1 kcal=4.184 kJ).In order to understand better the mechanism of the reaction, ab initio molecular orbital calculations were also carried out at the MP4(SDQ)/6-31G* level of theory using the HF optimized geometries.The molecular structures and energetics of five C6H5N1O2 isomers were calculated.Among them, the most likely and stable association product, phenyl nitrite (C6H5ONO), was found to be 17 kcal mol-1 below the reactants, C6H5O+NO.Combining the measured rate constant and the calculated equilibrium constant for the association reaction, C6H5O+NO=C6H5ONO the rate constant for the unimolecular decomposition of C6H5ONO was obtained as k-1=4.6*1015E-8580/T s-1.The relatively large frequency factor suggests that a loose transition state was involved in the reaction, akin to those of its alkyl analogs (RONO, R=CH3, C2H5, etc.).
View MoreChangzhou Kingyo Chemical Corporation Ltd.
website:http://www.kingyochem.com
Contact:+86-519-85105717
Address:19# Wuqing North Road, Changzhou , Jiangsu, China
Hangzhou Eastbiopharm Co.,Ltd.
Contact:+86-571-88931780
Address:Hangzhou,China
Fiarpharmatech Co., Ltd.(expird)
Contact:13482436141
Address:Room 1138, Building 3, No. 555, Huancheng Road(West), Fenxian District, Shanghai
Zhangjiagang Golden Reach Fine Chemical Co.,LTD.
Contact:+86-512-6585 6968
Address:Changfu Road, Dongsha Chemical Industry Park, Zhangjiagang City, Jiangsu Province, China
Contact:410-273-7300; 800-221-3953
Address:4609 Richlynn Dr., PO Box 369, Belcamp, MD, 21017-0369, USA
Doi:10.1248/cpb.c12-01034
(2013)Doi:10.1016/j.jphotochem.2017.03.012
(2017)Doi:10.1016/j.dyepig.2021.109778
(2021)Doi:10.1016/j.jorganchem.2010.08.052
(2011)Doi:10.1080/14756366.2018.1484733
(2018)Doi:10.1039/c39890000816
(1989)