Y. Zhou et al. / Bioorg. Med. Chem. Lett. 20 (2010) 125–128
127
Figure 5. (a) Fluorescence images of HaCaT cell treated with Zn2+ (10
probe 1 (20
and probe 1 (20
Fluorescence images of pancreatic b-cells with Zn2+ (5
l
M) and
l
Figure 4. (a) Bright field images of HaCaT cells treated with Zn2+ (10
1 (20 M). (b) Fluorescence images of (a). (c) Fluorescence images of pancreatic b-
cells without probe 1. (d) Fluorescence images of pancreatic b-cells with probe 1
(20 M).
lM) and probe
l
M). (b) Fluorescence images of HaCaT cell treated with Zn2+ (10
M)
M TPEN. (c)
M) and probe 1 (20 M). (d)
lM).
l
lM) and subsequent treatment of the cells with 25 l
l
l
l
Fluorescence image of (c) incubated with TPEN (50
90 min at 37 °C and washed three times with PBS to remove the re-
mained Zn2+ ion. As shown in Figure 4b, cells incubated with 5
Zn2+ and 1 (20
M) displayed clear green fluorescence.
These results encouraged us to use our probe 1 to detect biolog-
ically relevant intracellular Zn2+ ions. For the application of detect-
ing intrinsic Zn2+ ion in live cells, pancreatic b-cells (Rin-m cell
line), which contains intrinsic Zn2+ ions for storage of insulin,6
were used. Pancreatic b-cell line (Rin-m) were cultured in
Acknowledgments
lM
l
This work was supported by grants from the National Research
Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (20090083065, 20090063001) and WCU
program (R32-2008-000-10180-0).
Supplementary data
RPMI1640 medium (containing 2 mM L-glutamine, 10 mM HEPES,
1 mM sodium pyruvate, 4500 mg/l glucose, and 1500 mg/l sodium
bicarbonate) supplemented with 10% fetal bovine serum at 37 °C in
a humidified incubator. The detailed procedures are explained in
the supporting information. The results of fluorescence microscopy
experiments demonstrate that intracellular Zn2+ ions in pancreatic
b-cells can be fluorescently detected by using probe 1 (Fig. 4d). In
addition, even stronger green fluorescence was detected in pres-
ence of exogenous Zn2+ with 1 as shown in Figure 4c, which means
this probe can be used to detect increase or decrease of intracellu-
lar Zn2+ ion levels in the live cells.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Callan, J. F.; de Silva, A. P.; Magri, D. C. Tetrahedron 2005, 61, 8551; (b)
Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3; (c) Prodi, L.; Bolletta, F.;
Montalti, M.; Zaccheroni, N. Coord. Chem. Rev. 2000, 205, 59; (d) Kim, H.; Lee,
M.; Kim, H.; Kim, J. S.; Yoon, J. Chem. Soc. Rev. 2008, 37, 1465; (e) Kim, J. S.;
Quang, D. T. Chem. Rev. 2007, 107, 3780; (f) Xu, Z.; Chen, X.; Kim, H. N.; Yoon, J.
Chem. Soc. Rev. 2010. doi: 10.1039/b907368j.; (g) Xu, Z.; Singh, N. J.; Lim, J.; Pan,
J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528.
2. Recent reviews for zinc sensors: (a) Que, E. L.; Domaille, D. W.; Chang, C. J.
Chem. Rev. 2008, 108, 1517; (b) Nolan, E. M.; Lippard, S. J. Acc. Chem. Res. 2009,
42, 193; (c) Dai, Z.; Canary, J. W. New J. Chem. 2007, 31, 1708; (d) Jiang, P.; Guo,
J. Coord. Chem. Rev. 2004, 248, 205; (e) Carol, P.; Sreejith, S.; Ajayaghosh, A.
Chem. Asian J. 2007, 2, 338; (f) Lim, N. C.; Freake, H. C.; Brückner, C. Chem. Eur. J.
2005, 11, 38.
3. (a) Wong, B. A.; Friedle, S.; Lippard, S. J. J. Am. Chem. Soc. 2009, 131, 7142; (b)
Kiyose, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2006, 128, 6548;
(c) Qian, F.; Zhang, C.; Zhang, Y.; He, W.; Gao, X.; Hu, P.; Guo, Z. J. Am. Chem. Soc.
2009, 131, 1460; (d) Kim, H. M.; Seo, M. S.; An, M. J.; Hong, J. H.; Tian, Y. S.; Choi,
J. H.; Kwon, O.; Lee, K. J.; Cho, B. R. Angew. Chem., Int. Ed. 2008, 47, 5167; (e)
Jiang, W.; Fu, Q.; Fan, H.; Wang, W. Chem. Commun. 2008, 259; (f) Wu, Y.; Peng,
X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Org. Biomol. Chem. 2005,
1387; (g) Parkesh, R.; Lee, T. C.; Gunnlaugsson, T. Org. Biomol. Chem. 2007, 310;
(h) Joshi, B.; Cho, P. W.-M.; Kim, J. S.; Yoon, J.; Lee, K.-H. Bioorg. Med. Chem. Lett.
2007, 17, 6425; (i) Park, M. S.; Swamy, K. M. K.; Lee, Y. J.; Lee, H. N.; Jang, Y. J.;
Moon, Y. H.; Yoon, J. Tetrahedron Lett. 2006, 47, 8129; (j) Xu, Z.; Kim, G.-H.; Han,
S. J.; Jou, M. J.; Lee, C.; Shin, I.; Yoon, J. Tetrahedron 2009, 65, 2307; (k) Du, J.;
Fan, J.; Peng, X.; Li, H.; Sun, S. Sensors and Actuator B 2009. doi:10.1016/j.
4. (a) Bush, A. I.; Pettingell, W. H.; Multhaup, G.; Paradis, M.; Vonsattel, J.-P.;
Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464;
(b) Koh, J. Y.; Suh, S. W.; Gwag, B. J.; He, Y. Y.; Hsu, C. Y.; Choi, D. W. Science
1996, 272, 1013; (c) Walker, C. F.; Black, R. E. Annu. Rev. Nutr. 2004, 24, 255.
Then, the cells exposed to 1 and Zn2+ were further treated with
a membrane-permeable zinc chelator (N,N,N0,N0-tetrakis(2-pyridyl-
methyl) ethylenediamine, TPEN), which is known to decrease the
intracellular level of zinc.13 As shown in Figure 5b, the TPEN trea-
ted cells displayed very weak fluorescence, indicating that green
fluorescence is caused by response of 1 to intracellular zinc ions.
Fluorescence images of pancreatic b-cells with additional exoge-
nous Zn2+ (5
The results reveal that cells treated with both 1 (20
l
M) and probe 1 (20
l
M) are explained in Figure 5c.
lM) and exter-
nal Zn2+ ions (5
lM) have a brighter fluorescence response as com-
pared to the case without adding external Zn2+ ions. The TPEN
treatment also induced the substantial decrease of green fluores-
cence (Fig. 5d).
In conclusion, we successfully demonstrated that our relatively
simple probe 1 a highly selective fluorescence enhancement with
Zn2+ at pH 7.4. In addition, this probe was successfully applied
for imaging intracellular Zn2+ ions. Most importantly, we demon-
strated this probe can monitor the level of intrinsic Zn2+ in pancre-
atic b-cells.