1010
Mª A. Bonache et al.
LETTER
Selected data for compound 4: HPLC: tR = 10.74 min
Perkin Trans. 1 1999, 1067. (e) Kawabata, T.; Suzuki, H.;
Nagae, Y.; Fuji, K. Angew. Chem. Int. Ed. 2000, 39, 2155.
(f) Kawabata, T.; Chen, J.; Suzuki, H.; Nagae, Y.; Kinoshita,
T.; Chancharunee, S.; Fuji, K. Org. Lett. 2000, 2, 3883.
(g) Brewster, A. G.; Jayatissa, J.; Mitchell, M. B.; Schofield,
A.; Stoodley, R. J. Tetrahedron Lett. 2002, 43, 3919.
[50:50, H2O/MeCN (0.05%TFA)]. 1H NMR (300 MHz,
CDCl3): major rotamer d = 8.09 (d, 2 H, J = 7.8 Hz,
pyridine), 7.32–7.12 (m, 10 H, Ph), 6.68 (d, 2 H, J = 7.8 Hz,
pyridine), 5.46 (d, 1 H, J = 16.8 Hz, CH2N+), 5.33 (d, 1 H,
J = 16.8 Hz, CH2N+), 4.72 (d, 1 H, J = 17.2 Hz, N-CH2),
4.39 (dd, 1 H, J = 8.8, 6.2 Hz, a-H), 4.25 (d, 1 H, J = 17.2
Hz, N-CH2), 3.25 (dd, 1 H, J = 14.9, 6.2 Hz, b-H), 3.17 (s, 6
H, NMe2), 3.07 (dd, 1 H, J = 14.9, 8.8 Hz, b-H), 1.31 (s, 9 H,
t-Bu). 13C NMR (75 MHz, CDCl3): major rotamer d =
168.29 (COO), 166.07 (CON), 156.34 (4-C, pyridine),
143.68 (2-C, 6-C, pyridine), 137.35, 135.32, 129.29, 128.91,
128.86, 127.91, 127.59, 126,79 (Ph), 107.14 (3-C, 4-C,
pyridine), 82.22 (C, t-Bu), 63.09 (a-C), 58.71 (CH2N+),
51.41 (N-CH2), 40.48 (CH3N), 35.53 (b-C), 27.92 (CH3, t-
Bu). MS (ES, positive mode): 475.6 (M+ + 1).
(3) On the chirality memory through carbenium ion chemistry:
(a) Matsumura, Y.; Shirakawa, Y.; Satoh, Y.; Umino, M.;
Tanaka, T.; Maki, T.; Onomura, O. Org. Lett. 2000, 2, 1689.
(b) Wanyoike, G. N.; Onomura, O.; Maki, T.; Matsumura,
Y. Org. Lett. 2002, 4, 1875.
(4) Radicals as reactive intermediates in memory of chirality
processes: (a) Sauer, S.; Schumacher, A.; Barbosa, F.;
Giese, B. Tetrahedron Lett. 1998, 39, 3685. (b) Giese, B.;
Wettstein, P.; Stähelin, C.; Barbosa, F.; Neuburger, M.;
Zehnder, M.; Wessig, P. Angew. Chem. Int. Ed. 1999, 38,
2586. (c) Buckmelter, A. J.; Kim, A. I.; Rychnovsky, S. D.
J. Am. Chem. Soc. 2000, 122, 9386. (d) Griesbeck, A. G.;
Kramer, W.; Lex, J. Angew. Chem. Int. Ed. 2001, 40, 577.
(e) Griesbeck, A. G.; Kramer, W.; Bartoschek, A.;
Schmickler, H. Org. Lett. 2001, 3, 537. (f) Griesbeck, A.
G.; Kramer, W.; Lex, J. Synthesis 2001, 1159.
(12) Reaction of chloroacetyl derivative 1 with LHMDS afforded
pyrrolidinone 5, which was characterized as its methoxy
derivative 6 after treatment with diazomethane. The
formation of compound 5 could be attributed to the initial
generation of the amide enolate and a Dieckmann-type
condensation of this enolate with the ester group, followed
by enolisation of the resulting ketone (Figure 3).
(5) Gerona-Navarro, G.; Bonache, M. A.; Herranz, R.; García-
López, M. T.; González-Muñiz, R. J. Org. Chem. 2001, 66,
3538.
RO
(6) Oliveros, L.; López, P.; Minguillón, C.; Franco, P. J. Liq.
Chromatogr. 1995, 18, 1521.
Cl
N
(7) Column OL-389. Eluent: hexane/acetone (96:4). Flow rate:
1.5 mL/min. UV detection at 220 nm. Isomer 2a: tR = 7.77
min. Isomer 2b: tR = 9.07 min.
O
5: R = H
6: R = Me
CH2N2
(8) A general procedure was as follows: Compound 1 (83 mg,
0.19 mmol) was dissolved in the corresponding solvent (0.7
mL) and treated, at r.t. and under Ar atmosphere, with the
appropriate base (0.28 mmol). The reaction was monitored
by TLC until complete disappearance of the starting
material. The solution was evaporated, redissolved in
EtOAc, washed with H2O, and dried over Na2SO4. After
evaporation, the resulting residue was purified on a silica gel
column using a gradient from 20 to 30% of EtOAc in
hexane. The obtained compound 2ab was directly evaluated
by chiral HPLC, or transformed into dipeptide derivatives 3a
and 3b as described (ref.5). For the phase transfer reactions,
3 equiv of NaOH and KOH, and 10 equiv of CsOH were
respectively used.
MeO
Figure 3
Selected data for compound 6: 1H NMR (300 MHz, CDCl3):
d = 7.26 (m, 3 H, Ph), 7.05 (m, 2 H, Ph), 7.00 (d, 2 H, J = 8.6
Hz, Pmb), 6.80 (d, 2 H, J = 8.6 Hz, Pmb), 5.18 (d, 1 H,
J = 15.1 Hz, 1-CH2), 4.16 (s, 3 H, OMe), 3.93 (dd, 1 H,
J = 5.4, 4.1 Hz, 5-H), 3.83 (d, 1 H, J = 15.1 Hz, 1-CH2), 3.78
(s, 3 H, OMe), 3.13 (dd, 1 H, J = 14.3, 4.1 Hz, 5-CH2), 2.89
(dd, 1 H, J = 14.3, 5.4 Hz, 5-CH2). 13C NMR (75 MHz,
CDCl3): d = 167.4 (2-C), 164.22 (4-C), 159.07, 134.95,
130.05, 129.45, 129.04, 128.74, 127.32, 114.03 (Ar), 97.91
(3-C), 59.05 (OMe), 58.65 (5-C), 55.21 (OMe), 43.88
(5-CH2), 35.47 (1-CH2). MS (ES, positive mode): 358.2
(M+ + 1).
(9) BTPP: tert-Butylimino-tri(pyrrolidino)phosphorane.
BEMP: 2-tert-Butylimino-2-diethylamino-1,3-
dimethylperhydro1,3,2-diazaphosphorine.
(13) These results are atypical with respect to other alkylation
reactions for which the use of polar solvents, like MeCN,
resulted in almost racemic products: Belokon, Y. N.;
Kochetkov, K. A.; Churkina, T. D.; Ikonnikov, N. S.;
Chesnokov, A. A.; Larionov, O. V.; Singh, I.; Parmar, V. S.;
Vyskocil, S.; Kagan, H. B. J. Org. Chem. 2000, 65, 7041.
(14) (a) Taft, R. W.; Kamlet, M. J. J. Am. Chem. Soc. 1976, 98,
2886. (b) Kamlet, M. J.; Abboud, J. L.; Taft, R. W. J. Am.
Chem. Soc. 1977, 99, 6027.
(10) (a) Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller,
M.; Schmitt, D.; Fritz, H. Chem. Ber. 1994, 127, 2435.
(b) O’Donnell, M. J.; Delgado, F.; Dominguez, E.; de Blas,
J.; Scott, W. L. Tetrahedron: Asymmetry 2001, 12, 821.
(11) Attempts to cyclize N-benzyl-N-chloroacetyl-L-Phe-O-t-Bu
with DMAP resulted in the nucleophilic attack of the
reactive to the chloroacetyl derivative (compound 4, 90%,
Figure 2), as previously found for the cyclization of Trp
analogues with DBU, see: Gerona-Navarro, G.; Bonache, M.
A.; Herranz, R.; García-López, M. T.; González-Muñiz, R.
Synlett 2000, 1249.
(15) NMP was not included because really poor correlations were
found. To the best of our knowledge, the AN value for 2-
butanone has not been described.
(16) (a) Taft, R. W.; Pienta, N. J.; Kamlet, M. J.; Arnett, E. M. J.
Org. Chem. 1981, 46, 661. (b) Malavolta, L.; Oliveira, E.;
Cilli, E. M.; Nakaie, C. R. Tetrahedron 2002, 58, 4383.
(17) Among all the solvents tested here, NMP has not only the
highest donor number (DN) but also the biggest difference
between AN and DN parameters. DN is a reasonably good
measure of the ability of the solvent to serve as an electron-
pair donor to solutes when oxygen bases are considered.
CO2t-Bu
N
N
+
4
O
-
N
Cl
Figure 2
Synlett 2003, No. 7, 1007–1011 ISSN 1234-567-89 © Thieme Stuttgart · New York