Communication
ChemComm
(b) Fungal Metabolites, ed. W. B. Turner, Academic Press Inc, 1982,
vol. 2.
2 (a) T. T. Dabrah, H. J. Harwood, L. H. Huang, N. D. Jankovich,
T. Kaneko, J.-C. Li, S. Lindsey, P. M. Moshier, T. A. Subashi,
M. Therrien and P. C. Watts, J. Antibiot., 1997, 50, 9933;
(b) T. T. Dabrah, T. Kaneko, W. Massefski and E. B. Whipple,
J. Am. Chem. Soc., 1997, 119, 1594.
3 A. W. Alberts, J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman,
J. Rothrock, M. Lopez, H. Joshua, E. Harris, A. Patchett, R. Monaghan,
S. Currie, E. Stapley, G. Albers-Schonberg, O. Hensens, J. Hirshfield,
K. Hoogsteen, J. Liesch and J. Springer, Proc. Natl. Acad. Sci. U. S. A.,
1980, 77, 3957.
4 M. J. Dawson, J. E. Farthing, P. S. Marshall, R. F. Middleton,
M. J. O’Neill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor,
H. G. Wildman, A. D. Buss, D. Langly and M. V. Hayes, J. Antibiot.,
1992, 45, 639.
5 Y. H. Chooi and Y. Tang, J. Org. Chem., 2012, 77, 9933.
6 R. J. Cox and T. J. Simpson, in Comprehensive Natural Products II:
Chemistry and Biology, 10 Volume Set, ed. L. Mander and H. W. Liu,
Elsevier, Oxford, 2010, vol. 1, pp. 347–383.
7 (a) A. Ichihara, H. Oikawa, K. Hayashi and S. Sakamura, J. Am. Chem.
Soc., 1983, 105, 2907; (b) A. Ichihara, H. Oikawa, M. Hashimoto,
S. Sakamura, T. Haraguchi and H. Nagano, Agric. Biol. Chem., 1983,
47, 2965.
8 H. Oikawa, A. Ichihara and S. Sakamura, J. Chem. Soc., Chem.
Commun., 1984, 814.
9 H. Oikawa, A. Ichihara and S. Sakamura, J. Chem. Soc., Chem.
Commun., 1988, 600.
10 H. Oikawa, A. Ichihara and S. Sakamura, J. Chem. Soc., Chem.
Commun., 1990, 908.
11 M. N. Heneghan, A. A. Yakasai, L. M. Halo, Z. Song, A. M. Bailey,
T. J. Simpson, R. J. Cox and C. M. Lazarus, ChemBioChem, 2010,
11, 1508.
12 R. Fujii, A. Minami, T. Tsukagoshi, N. Sato, T. Sahara, S. Ohgiya,
K. Gomi and H. Oikawa, Biosci., Biotechnol., Biochem., 2011, 75, 1813.
13 K. Tagami, C. Liu, A. Minami, M. Noike, T. Isaka, S. Fueki,
Y. Shichijo, H. Toshima, K. Gomi and H. Oikawa, J. Am. Chem.
Soc., 2013, 135, 1260.
14 Z. Wasil, K. A. K. Pahirulzaman, C. Butts, T. J. Simpson, C. M. Lazarus
and R. J. Cox, Chem. Sci., 2013, 4, 3845.
Most HR-PKSs possess a functionally active ER domain
(cis-ER) (Table S2, ESI†). By contrast, a prominent feature of
the Bet1/3 system is that the cis-ER of Bet1 is inactive and Bet3
participates in the polyketide chain construction as a trans-
acting ER (trans-ER). A similar collaborative action of trans-ER
is frequently found in PKS-NRPS hybrids.5,25 A common feature
of Bet1 and PKS-NRPSs is that both PKSs produce a linear
polyketide chain having a b-ketoacyl group. The exceptional
case was reported for the LovB/C system (Table S2, ESI†), which
produces polyketide with a b-hydroxy group.23 Previous structural
analysis of LovC provided sufficient data to propose the catalytic
mechanism.26 A phylogenetic analysis including 8 trans-ERs
found in HR-PKS–PKS-NRPS systems and 22 ER domains
(cis-ER) of HR-PKS–PKS-NRPSs suggested that ERs could be
divided into 3 groups (Fig. S7, ESI†). trans-ERs, including Bet1
and LovC, form Clade I, while functionally active and inactive
cis-ERs are classified into Clade II and Clade III, respectively.
This classification is likely general because the uncharacterized
HR-PKS system, comprising FSL1 (HR-PKS) and FSL5 (trans-ER)
involved in fusarielin biosynthesis,27 belongs to the same group
as Bet1/3 and LovB/C. Multiple sequence alignment revealed
a new ‘‘fingerprint’’ region to distinguish functionally active
and inactive cis-ERs (Fig. S8, ESI†). In addition, a previously
proposed point mutation in the NADPH-binding motif of
cis-ERs28 was also found in the case of Acrts2, which is
classified into Clade II. The inactivation of the ER domain
corresponds to the polyketide structure of ACR-toxin.29 Notably,
sequence and phylogenetic analyses of ERs revealed that
Bet1 and LovB, having a C-terminal reductase domain and a
condensation domain, respectively, are classified into the same
clade with PKS-NRPS, suggesting an evolution of ancestral
PKS-NRPS towards Bet1 and LovB by partial deletion of char-
acteristic domains for NRPS.
15 K. Tagami, A. Minami, R. Fujii, C. Liu, M. Tanaka, K. Gomi, T. Dairi
and H. Oikawa, ChemBioChem, 2014, 15, 2076.
16 Y. Matsuda, T. Wakimoto, T. Mori, T. Awakawa and I. Abe, J. Am.
Chem. Soc., 2014, 136, 15326.
In summary, we have identified and characterized the
betaenone biosynthetic gene cluster. Through heterologous
expression studies, we have established that Bet1 and Bet3
are key enzymes for skeletal construction in betaenone bio-
synthesis. To our knowledge, this is the first functional char-
acterization of a fungal HR-PKS harboring an R domain, which
catalyzes the reductive release of the polyketide chain. Based on
the chemical reactivity and conformational search of dehydro-
probetaenone I, we proposed the biosynthetic hypothesis that
reductive cleavage of the linear polyketide chain followed
by a Diels–Alder reaction gives the trans-decalin skeleton.
Co-expression of bet4 and bet2 with bet1/3 in A. oryzae also
revealed subsequent reductive and oxidative modifications in
betaenone biosynthesis.
17 S. Miki, Y. Sato, H. Tabuchi, H. Oikawa, A. Ichihara and
S. Sakamura, J. Chem. Soc., Perkin Trans. 1, 1990, 1228.
18 K. Kasahara, T. Miyamoto, T. Fujimoto, H. Oguri, T. Tokiwano,
H. Oikawa, T. Ebizuka and I. Fujii, ChemBioChem, 2010, 11, 1245.
19 I. Fujii, N. Yoshida, S. Shimomaki, H. Oikawa and Y. Ebizuka, Chem.
Biol., 2005, 12, 1301.
20 W. Xu, Y. H. Chooi, J. W. Choi, S. Li, J. C. Vederas, N. A. Da Silva and
Y. Tang, Angew. Chem., Int. Ed., 2013, 52, 6472.
21 X. Xie, M. J. Meehan, W. Xu, P. C. Dorrestein and Y. Tang, J. Am.
Chem. Soc., 2009, 131, 8388.
22 B. Manavalan, S. K. Murugapiran, G. Lee and S. Choi, BMC Struct.
Biol., 2010, 10, 1.
23 S. M. Ma, J. W. H. Li, J. W. Choi, H. Zhou, K. K. M. Lee,
V. A. Moorthie, X. Xie, J. T. Kealey, N. A. Da Shilva, J. C. Vederas
and Y. Tang, Science, 2009, 326, 589.
24 (a) H. Oikawa, Y. Suzuki, A. Naya, K. Katayama and A. Ichihara,
J. Am. Chem. Soc., 1994, 116, 3605; (b) H. Oikawa, K. Katayama,
Y. Suzuki and A. Ichihara, J. Chem. Soc., Chem. Commun., 1995, 908.
25 D. Boettger and C. Hertweck, ChemBioChem, 2013, 14, 28.
26 B. D. Ames, C. Nguyen, J. Bruegger, P. Smith, W. Xu, S. Ma, E. Wong,
S. Wong, X. Xie, J. W.-H. Li, J. C. Vederas, Y. Tang and S. Tsai, Proc.
Natl. Acad. Sci. U. S. A., 2012, 109, 11144.
27 J. L. Sorensen, F. T. Hansen, T. E. Sondergaard, D. Staerk,
L. G. Klitgaard, S. Purup, H. Giese and R. J. N. Frandsen, Environ.
Microbiol., 2012, 14, 1159.
We are grateful to Prof. Masanori Arita of the National
Institute of Genetics for meaningful discussions about the
phylogenetic analysis of the KS domain of PKS. This work
was financially supported by a MEXT research grant on innova-
tion area 22108002 to H. Oikawa.
28 K. Kasahara, I. Fujii, H. Oikawa and Y. Ebizuka, ChemBioChem,
2006, 7, 920.
29 Y. Izumi, K. Ohtani, Y. Miyamoto, A. Masunaka, T. Fukumoto,
K. Gomi, Y. Tada, K. Ichimura, T. L. Peever and K. Akimitsu, Mol.
Plant-Microbe Interact., 2012, 25, 1419.
Notes and references
1 (a) Handbook of Secondary Fungal Metabolites, 3-Volume Set, ed.
R. J. Cole, B. B. Jarvis and M. A. Schweikert, Elsevier, 2003;
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2014